

Time compensation in the celestial compass of insects

Evripidis Gkanias[™] and Barbara Webb

School of Informatics, University of Edinburgh

✓ ev.gkanias@ed.ac.uk

European Innovation Council

Introduction

The sun's position must be time-compensated to become a geocentric compass. We explore the time compensation mechanism in the insect brain, and present: 1. Two models that can track the sun in different levels of precision, 2. A time-compensation mechanism based on trigonometric identities, 3. Simulations of foraging and migrating insects using both models.

Celestial compass and clock neurons

The sun is detected by photoreceptors in the compound eyes. Downstream TuBu1 neurons represent the sun [1] (model [2]). Two DN1pB neurons represent time in *D. melanogaster* [1, 3]. Time is synchronised using daylight [4].

References

Ν

18

20

22

Ε

DN1pB activity oscillates during the day, resembling clock proteins [5].

Compensation for the moving sun

 $\cos(\alpha - \alpha' + \varphi^n) = \sin(\alpha) \sin(\alpha' - \varphi^n) + \cos(\alpha) \cos(\alpha - \varphi^n)$

[1] B. J. Hardcastle et al. eLife, vol. 10, p. e63225, 2021.

- [2] E. Gkanias et al. Communications Engineering, vol. 2, no. 1, p. 82, 2023.
- [3] B. K. Hulse et al. eLife, vol. 10, 2021.
- [4] C. Merlin et al. Science, vol. 325, no. 5948, pp. 1700–1704, 2009.
- [5] E. Shlizerman *et al. Cell Reports*, vol. 15, no. 4, pp. 683–691, 2016.

TuBu1a/b populations represent the retinotopic sun's position [2]. A 90 $^{\circ}$ phase-shift encodes the sine and cosine of the head-sun angle. Similarly, DN1pB_E/_N neurons predict the north-sun angle in time. Their responses combine using trigonometry into a celestial compass.

A couple of annual clock neurons can estimate the solar declination, representing the seasonal changes in daylight duration.

The geometric latitude is a monotonic function of the geomagnetic inclination and represents the direction of the hour-angle.

Simulations of central-place foraging and migration

Representation of the north-sun angle.

Both models are sufficient for foraging when combined with landmarks. The hour-angle model can explain migration in both hemispheres. The complete model is needed when insects cross the equator.

6 evgkanias.github.io

International Congress of Neuroethology, 2024