

The lime-compensated celestial compass of insects

Evripidis Gkaniast & Barbara Webbt

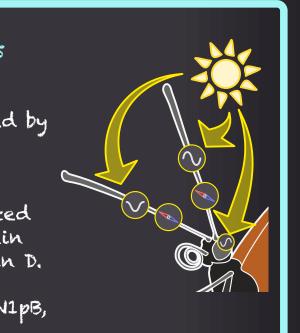
ev.gkanias@gmail.com

thund University & the University of Edinburgh

@ evgkanias.github.io

\$\phi\$, need more context?

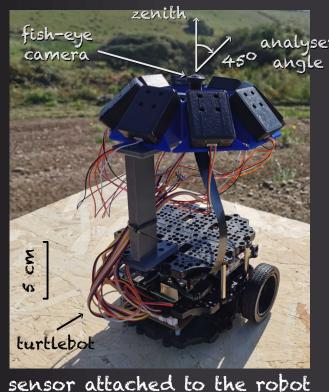
Insects are excellent navigators. They can forage for hundreds of meters⁴ and migrate for thousands of kilometers in order to survive. They achieve that using their celestial compass. First, this compass needs to accurately detect the sun, even when this is covered by clouds or trees. To do that, it tries to match the sky's intensity and polarisation patterns with filters on the insect's eyes^{1,6,7}. Then, the compass needs to compensate for the movement of the sun during the day⁸. So it integrates light over the day to approximate the local time. Using the time, it transforms the sun's position into a geocentric compass and exploits geometrical constraints to save brain power. DN1pB neurons were proposed to inform the celestial compass about the time passed in Drosophila melanogaster fruit flies's. There are two of these neurons in each hemisphere of the brains, expressing daily calsium oscillations10. However, how are these oscillations used by the compass and how they integrate into a geocentric compass is not yet understood.


1. summary

We propose a celestial compass sensor and model that immitates the one of insects. The design of our sensor is based on the fanlike arrangement of the polarisation filters in the insect's eyes1,2. We propose a local processing pipeline of the light intensity and polarisation and how these integrate to create activity bumps in the ring attractors of central complex. We model the calcium oscillations based on light sensitive proteins and synchronise their phase to noon for stability3. We combine ring attractor bumps (spatial information) with activity oscillations (temporal information) to spatiotemporally integrate the sun's position and time into a geocentric compass³.

Gkanias and Webb. 2025 3, clock neurons Nature Communications zeitgeber time (t_z) [h] In the insect brain, time is represented by proteins, like the timeless (Tim) and cryptochrome type 2 (Cry2). These proteins are detected in the eyes and antennas of insects, and they translated into neural activity in the central brain through undiscoverred mechanisms. In D. melanogaster the clock neurons that target the compass pathway are the DN1pB, which show in pairs per hemisphere?.

- Cry2(t) / $\omega_{E}(t) = -\sin(\omega(t))$


--- Tim(t) / $\omega_N(t) = -\cos(\omega(t))$

2. sun's position

Gkanias et al. 2023 Communications Engineering

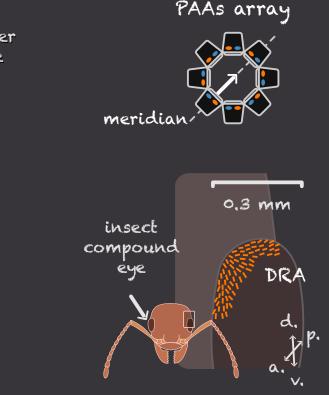
We built a sensor protorype that uses 8 polarisation axis analysers (PAAs). Each PAA uses 2 UV photodiodes with orthogonal polarisation filters, immitating the properties of the ommatidia on the dorsal rim area (DRA) of the insect's eye.

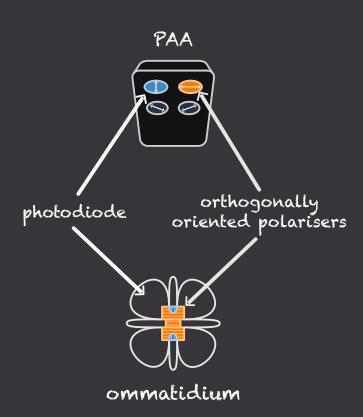
2.2 resolving the solar azimuth

with the viewing direction of the PAA. Its

(p) or their integration (c).

A vector is assigned to every optical processing

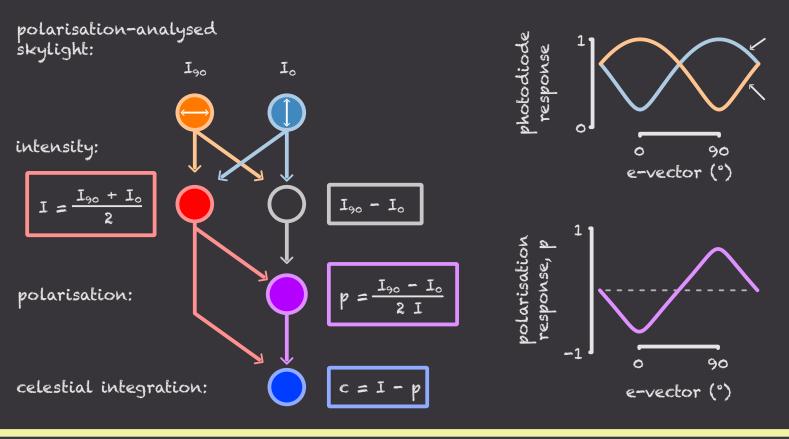

neuron. The direction of the vector correlates


length depends on the response of the neuron.

A vector sum gives us the solar azimuth based on the light intensity (I), polarisation contranst

tracking the solar azimuth

(global reference ±5°)



> encoded direction of each unit

strength and sign of the response

2.1 optical processing We process the outputs of the photodiodes in each PAA localy, immitating the per-column processing in the optic lobes of insects11. For each PAA, we compute the light intensity, polarisation contrast, and their celestial integration.

celestial compass and clock connection

compass pathway

DN1pB (a)

central complex

photoreceptors

R7/R8

MeTuz

TuBula/b

celestial compass

ER4m

medula

AOTu

bulb

SLP270

ocelli

LN & DN

time information

Cry2, Vri

mushroom body

antennas

clock

descending

neurons

neurons

- estimated (T_L)

hour angle (w) [°]

We model the protein levels of the Tim and Cry2 proteins as the sine and cosine of the hour angle. The hour angle is zero at noon and completes a circle by next noon, increasing by 15° per hour. The sine and cosine can then be used to create a Cartesian representation of the hour hand of a clock, that roughtly tracks the sun's position. However, the phase of the hour angle oscillation should not be bount

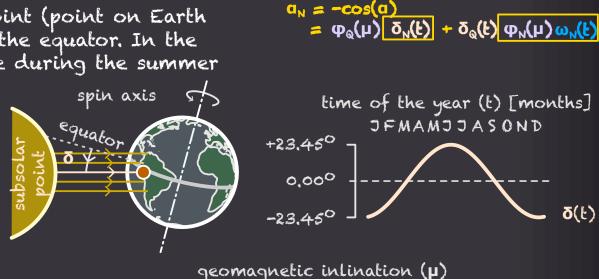
to sunrise (and as a result to

3.1 the hour angle model (w)

the zeitgeber time). To unbind the phase from the zeitgeber time, we must add half the day length. This amount can be computed by integrating the blue-light sensitive Cry1 protein level over a year. To understand how insects might calculate the day length, we optimised a differential equation that uses the overall blue light intensity in the sky.

Our result suggests that a continuous update of the day length estimation needs less than 5 days to synchronise to the local time.

3,2 the complete solar azimuth model (a)


time [h]

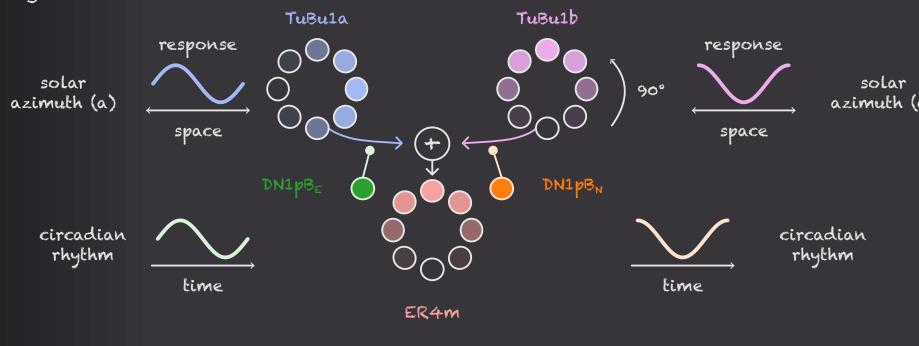
The hour angle model can accurately predict the local solar time but it does not predict the solar azimuth. To do that, we need the time of the year (season) and geographic latitude of the observer. We suggest that insects can compute these values locally by utilising the solar declination and geomagnetic inclination respectively.

solar declination (δ)

neurons with annual period.

This is the angle of the subsolar point (point on Earth that the sun is at the zenith) from the equator. In the northern hemisphere, this is positive during the summer and negative during the winter, and is described by an angle oscillating between ±23.45°. The insect brain could encode the solar declination with two clock

-90°-45° 0° +45°+90°


4. celestial compass

Gkanias and Webb. 2025 Nature Communications

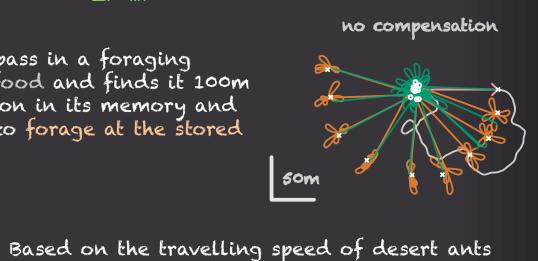
Cartesian vectors can be represented by ring attractors that form bumps of activities1,2. These bumps describe sinusoidal signals: their phase is the angle and their amplitude is the length of a vector.

We assume a 90° phase shift between two neuron types in the insect brain (TuBula and TuBulb). This represents the sine and cosine of the solar azimuth.

We then predict that one DN1pB neuron (e.g., activated by the Tim protein) targets one TuBul type and another DN1pB, neuron (activated by the Cry2 protein, respectively) targets the other one.

 $\cos(\alpha - \alpha' + \varphi^n) = \sin(\alpha) \sin(\alpha' - \varphi^n) + \cos(\alpha) \cos(\alpha' - \varphi^n)$

This implements a crucial trigonometric identity that shifts the detected sun's position by the expected solar azimuth as claculated using the clock neurons. The result is a compass that points North!

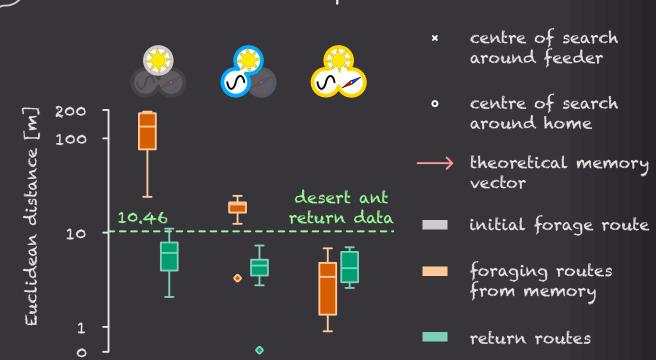

geomentric latitude (φ) Some insects can detect the geomagnetic inclination (μ) , which is a monotonic

function of their geometric latitude.

5. central place foraging

Gkanias and Webb. 2025 Nature Communications no compensation

We tested the performance of our compass in a foraging scenario, where an insect searches for food and finds it 100m away from the nest. It stores the location in its memory and returns to its nest. The insect attempts to forage at the stored location repeatedly every hour.


geometric

Without time compensation the stored location drifts with time, reducing the foraging performance. Using either the hour angle or the complete model for time compensation, the

performance increased

and almost matched the

one of the desert ants4.

(0.5 m sec-1), the foraging duration in this

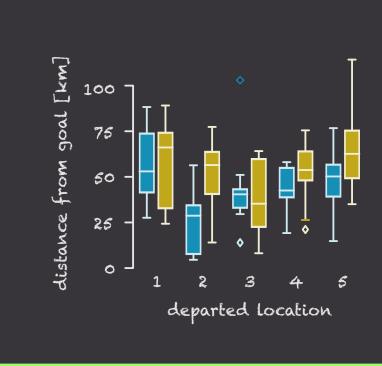
foraging the sun's position did not change

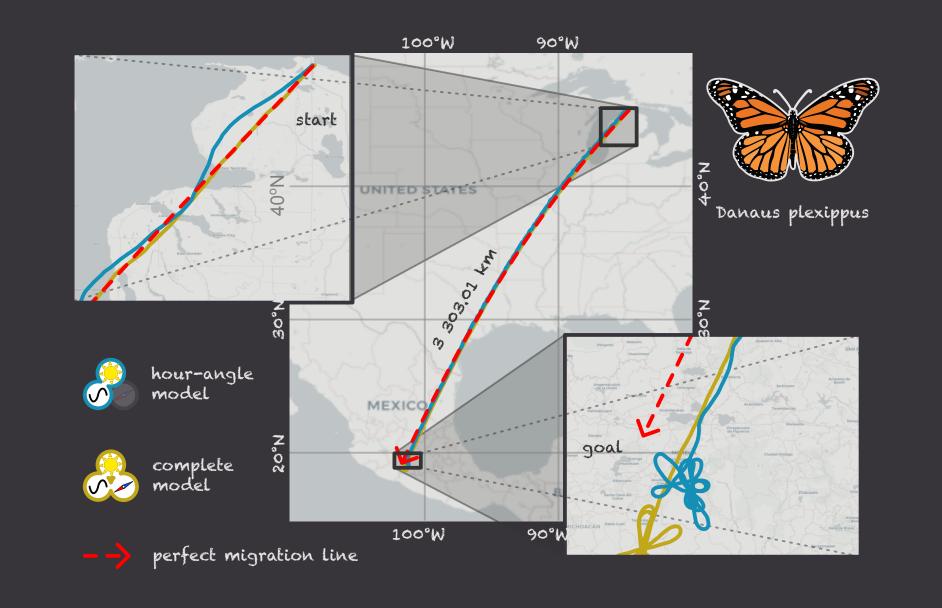
even when time compensation was not used.

experiment was around 6.5 min. At the end of

much, which made the return routes suggessful

6. migration

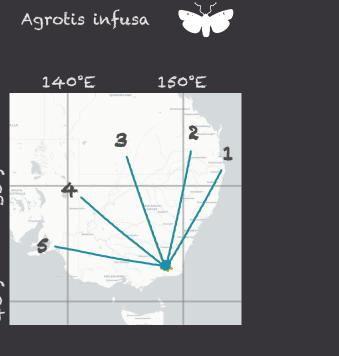

Gkanias and Webb. 2025 Nature Communications

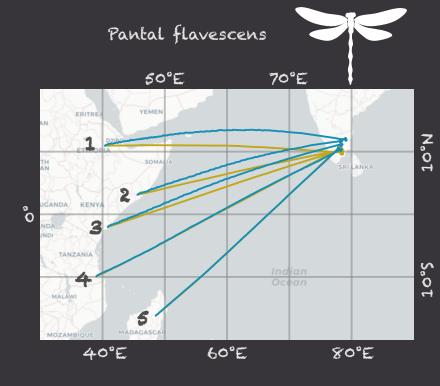

We challenged our compass model in migration scenarios, imitating the autumn migration of monarch butterflies (Danaus plexippus). Both the hour-angle and complete time compensation models

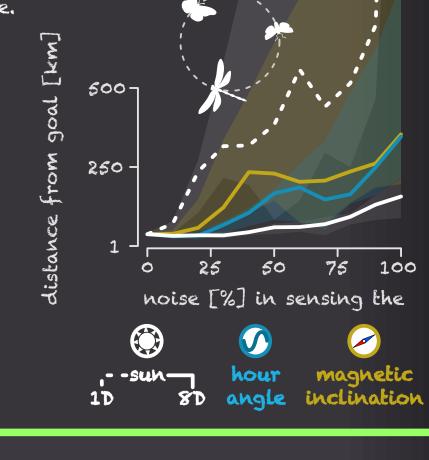
successfully drove the butterflies from the Canadian borders to

100°W

Mexico.






We further challenged the two models in the south hemishere (Bongong moths) and close to the equator (globe skimmer dragonfly), where the sun moves counterclockwise and biannually switches moving direction respectively.

When we hardwired a switch in its moving direction, the hour-angle model did well in the south hemisphere. However, even when we hardwired a switch from east to west in the afternoon, the model drifted close to the equator as its latitude diverged from the subsolar latitude.

On the other hand, the performance of the complete model was unaffected. Our sensitivity analysis revealled that the multidimentional representation of the sun made the model more resilient to noise, while temporal and magnetic noise disturb the model in a similar rate.

references

120°W

1. Gkanias et al. (2019). From skylight input to behavioural output: a computational model of the insect polarised light compass. PLoS Comput Biol 15, e1007123. 2. Gkanias et al. (2023). Celestial compass sensor mimics the insect eye for navigation under cloudy and occluded skies.

Commun Eng 2, 82. 3. Gkanias and Webb (2025). Spatiotemporal computations in the insect celestial compass. Nat Commun 16, 2832. 4. Huber and Knaden (2015). Egocentric and geocentric navigation during extremely long foraging paths of desert ants. J

5. Merlin et al. (2009). Antennal corcadian clocks coordinate sun compass orientation in migratory monarch butterflies. Science 325, 1700-1704. 6. Bech et al. (2014). Receptive fields of locust brain neurons are matched to polarization patterns in the sky. Curr Biol

7. Wehner (1987). 'Matched filters'-neuronal models of the external world. J Compar Physiol A 161, 511-531. 8. Wehner and Lanfranconi (1981). What do the ants know about the rotation of the sky? Nature 293, 731-733. 9. Hulse et al. (2021). A connectome of the Drosophila central complex reveals network motifs suitable for flexible navigation and context-dependent action selection. eLife 10, e66039.

10. Guo et al. (2018). A circadian output circuit controls sleep-wake arousal in Drosophila. Neuron 100, 624-635.e4. 11. Hardastle et al. (2021). A visual pathway for skylight polarization processing in Drosophila. eLife 10, e63225. 12. Guerra et al. (2014). A magnetic compass aids monarch butterfly migration. Nat Commun 5, 4164.

7. conclusions and future directions

Our sensor prototype accurately detects the sun under natural skies with occlusions.

Our time compensation mechanism can correct for the sun's movement during the day, transforming the sensor into a geocentric compass.

Our results suggest that a simpler hour angle model is sufficient for most of the long distance migrations. A more complete model might be necessary for smaller scale navigation, where the geometric latitude can be hardwired in the brain.

Engineering and Physical Sciences

We are currently working on improving the sun's detection to

Another future direction would be to implement the light-based dynamic clock on board and test the time-compensated célestial compass sensor in long experiments.

Acknowledgments:

