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We challenged our compass model in migration scenarios, 
imitating the autumn migration of monarch butterflies (Danaus 
plexippus).

Both the hour-angle and complete time compensation models 
successfully drove the butterflies from the Canadian borders to 
Mexico.
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Ø. need more context?
Insects are excellent navigators. They can forage for hundreds of meters4 and migrate for 
thousands of kilometers5 in order to survive. They achieve that using their celestial compass. First, 
this compass needs to accurately detect the sun, even when this is covered by clouds or trees. To 
do that, it tries to match the sky's intensity and polarisation patterns with filters on the insect's 
eyes1,6,7. Then, the compass needs to compensate for the movement of the sun during the day8. So 
it integrates light over the day to approximate the local time. Using the time, it transforms the 
sun's position into a geocentric compass and exploits geometrical constraints to save brain power. 
DN1pB neurons were proposed to inform the celestial compass about the time passed in Drosophila 
melanogaster fruit flies9. There are two of these neurons in each hemisphere of the brain9, 
expressing daily calsium oscillations10. However, how are these oscillations used by the compass 
and how they integrate into a geocentric compass is not yet understood.

6. migration

5. central place foraging

The time-compensated celestial compass of insects
Evripidis Gkanias                               Lund University & the University of Edinburgh

ev.gkanias@gmail.com evgkanias.github.io

We propose a celestial compass sensor and model that immitates the one of insects. The design of our sensor is based on the 
fan-like arrangement of the polarisation filters in the insect's eyes1,2. We propose a local processing pipeline of the light 
intensity and polarisation and how these integrate to create activity bumps in the ring attractors of central complex. We model 
the calcium oscillations based on light sensitive proteins and synchronise their phase to noon for stability3. We combine ring 
attractor bumps (spatial information) with activity oscillations (temporal information) to spatiotemporally integrate the sun's 
position and time into a geocentric compass3.

1. summary

Gkanias and Webb. 2025
Nature Communications

Gkanias and Webb. 2025
Nature Communications

We built a sensor protorype that uses 8 polarisation axis analysers (PAAs). Each
PAA uses 2 UV photodiodes with orthogonal polarisation filters, immitating the
properties of the ommatidia on the dorsal rim area (DRA) of the insect's eye.

PAAs array

meridian

d.

v.

p.

a.

DRA

We process the outputs of the photodiodes in each PAA localy, immitating the
per-column processing in the optic lobes of insects11. For each PAA, we compute 
the light intensity, polarisation contrast, and their celestial integration.

2.1 optical processing
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A vector sum gives us the solar azimuth based on the
light intensity (I), polarisation contranst (p) or their
integration (c). 

A vector is assigned to every optical processing neuron.
The direction of the vector correlates with the viewing
direction of the PAA. Its length depends on the response
of the neuron.

2.2 resolving the solar azimuth

equator

3. clock neurons Gkanias and Webb. 2025
Nature Communications
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In the insect brain, time is represented by proteins5, like the timeless (Tim) and cryptochrome 
type 2 (Cry2). These proteins are detected in the eyes and antennas of insects, and they 
translated into neural activity in the central brain through undiscoverred mechanisms. In D. 
melanogaster the clock neurons that target the compass pathway are the DN1pB, which show in 
pairs per hemisphere9.
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3.1 the hour angle model (ω)
We model the protein levels of the Tim and Cry2 proteins as the sine and cosine 
of the hour angle. The hour angle is zero at noon and completes a circle by next 
noon, increading by 15° per hour. The sine and cosine can then be used to create 
a cartesian representation of the hour hand of a
clock, that roughtly tracks the sun's position.

However, the phase of the hour angle
oscillation should not be bount to sunrise
(and as a result the zeitgeber time). To
unbind the phase from the zeitgeber time,
we must add half the day length. This amount can be computed by integrating the 
blue-light sensitive Cry1 protein level over a year. To understand how insects might 
calculate the day length, we optimised a differential equation that uses the overall 
blue light intensity in the sky. Our result suggests that a continuous update of the day 
length estimation needs less than 5 days to synchronise to the local time.

3.2 the complete solar azimuth model (α)
The hour angle model can accurately predict the local solar time but it 
does not predict the solar azimuth. To do that, we need the time of the 
year (season) and geographic latitude of the observer. Insects can compute 
these values locally by utilising the solar declination and geomagnetic 
inclination respectively.

solar declination (δ)
This is the angle of the subsolar point (point on Earth that the sun is at 
the zenith) from the equator. In the northern hemisphere, this is positive 
during the summer and negative during the winter, and is described by 
an angle oscillating between ±23.45°. The insect brain could encode the 
solar declination with two clock neurons with annual period.

geomentric latitude (φ)
Some insects can detect the
geomagnetic inclination12 (μ),
which is a monotonic function of
their geometric latitude.
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Cartesian vectors can be represented by ring attractors that
form bumps of activities1,2. These bumps describe sinusoidal 
signals: their phase is the angle and their amplitude is the 
length of a vector.

We assume a 90° phase shift between two neuron types in the 
insect brain (TuBu1a and TuBu1b). This represents the sine and 
cosine of the solar azimuth.

We then predict that one DN1pBE neuron (e.g., activated by the 
Tim protein) targets one TuBu1 type and another DN1pBN 

neuron (activated by the Cry2 protein, respectively) targets the 
other one.

This implements a crucial trigonometric identity that shifts 
the detected sun's position by the expected solar azimuth as 
claculated using the clock neurons. The result is a compass 
that points North!

We tested the performance of our compass in a foraging 
scenario, where an insect searches for food and finds it 
100m away from the nest. It stores the location in its 
memory and returns to its nest. The insect attempts to 
forage at the stored location repeatedly every hour.

Based on the travelling speed of desert 
ants (0.5 m sec-1), the foraging duration 
in this experiment was around 6.5 min. 
At the end of foraging the sun's position 
did not change much, which made the 
return routes suggessful even when time 
compensation was not used.

Without time 
compensation the 
stored location 
drifts with time, 
reducing the 
foraging 
performance.

Using either the 
hour angle or the 
complete model for 
time compensation, 
the performance 
increased and 
almost matched the 
one of the desert 
ants4.
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