The incentive circuit of the fruit fly brain:

a computational perspective
Evripidis Gkanias', Li Yan I\/IcCurdyz, Michael N Nitabach? and Barbara Webb!

THE UNIVERSITY of EDINBURGH

- informatics

W
!School of Informatics, University of Edinburgh Val P> o @
2Department of Cellular and Molecular Physiology, Yale School of Medicine d1€ SCHOOL OF MEDICINE

Abstract

. Key circuits for associative and reinforcement learning have been identified in the mushroom body neuropils of the insect brain [1, 2].
2. Detailed imaging, electrophysiological and structural data about the mushroom bodies in Drosophila melanogaster has led to the identification of a variety of microcircuits involved in memory.

n [3], we propose a comprehensive scheme, based on the connectivity and the responses of identified neurons in the mushroom bodies.

> We link these known microcircuits together as an incentive circuit that acquires, forgets and assimilates associative memories over different timescales.
> We suggest that our novel dopaminergic learning rule increases the adaptation capabilities of the overall circuit.
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> We exploit these properties to enable short- and long-term memories, respectively, to be formed and forgotten in parallel for different contexts.

S
57 dopaminergic neurons (DAN) Computational model of the incentive circuit

» Sensory input is projected onto the calyxes, from
where the numerous kenyon cells (KCs) distribute
it to the much fewer output neurons (MBONSs).
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» The model has been validated by mapping all its
ConneCtionS to their eqUivalent 1 ﬂies: Mode"ing the neural responses
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» We show that the incentive circuit combined with the DLR can replicate experimental observations of the response dynamics of specific
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