Imitating Drosophila Larval Learning Behaviour on a Robot

Evripidis Gkanias, Konstantinos Lagogiannis and Barbara Webb* Institute of Perception, Action and Behaviour, School of Informatics, University of Edinburgh *B.Webb@ed.ac.uk

Olfactory Learning

Drosophila larva can learn to associate an odour with a reward which is perceived through their gustatory sensors. The animal follows the odour gradient to move towards or away from the source; in the absence of reward this depends on how the reward was paired to odour.

The Mushroom Body Model

We take the MB circuit motif from [1] as the basis of our computational model. Using behavioural data [2] we can define the desired output (M) for a given odour (KC) and reward (R) modulation. Solving the equations based on the network topology in turn determines the required change in connection weights.

$D^{(t)} =$	$R^{(t)} + KC^{(t)}$	$t)_{W_{\alpha}}$ -
$M^{(t)} =$	$KC^{(t)}(w_{eta}$ -	$\vdash D^{(t)}$

Naive (N)			Paired (P)			Unpaired (U		
R	KC	M	R	КС	M	R	KC	
1	1	1	1	1	1	1	1	1
0	1	1	0	1	0	0	1	
1	0	0	1	0	0	1	0	(
0	0	0	0	0	0	0	0	(

C	Connection Weights			
	W_{eta}	W_{δ}	W_ϵ	
N	1	-1	1	
P	0	-1	2	
U	2	-1	0	

The output (M) modulates the movement model below when $M \neq 1$. For M < 1 (M > 1) there is increased attraction (aversion).

The Oscillation Model

We model larval gradient following as a continuous left-right oscillation with an amplitude modulated by changes in sensory input [3]. The mushroom body output contributes additively to this modulation.

Alternative solutions for the attractive case are possible, but require more connections.

works for the unpaired case.

Future work: discriminating between odours; incorporating a feedback to KCs neuron

$$D = M^{(t-1)} W_{\gamma}^{0}$$

 $W_{\epsilon}) + D^{(t)} W_{\delta}$

Initially, the odour has never beer perienced before.

The odour is presented with a rew in the first 300 time-steps.

– The agent learns to associate odour exposed with the reward. behaviour does not change.

The reward is removed in step 302

- The agent now follows the od gradient in order to find the rewar

Initially, the reward is presented v the absence of any odour.

 The agent performs a random v on the arena.

An odour is presented without a ward for the first 600 time-steps

- The agent now learns that odour does not give a reward. It tu away to explore other areas.

A reward added in step 601.

– The agent performs the innate haviour.

Funding: ERC FP7-ICT-2013-C (CP) 'Miniature Insect Model for Active Learning (MINIMAL)'.

[1] K. Eichler, F. Li, A. Litwin-Kumar, Y. Park, I. Andrade, C. M. Schneider-Mizell, T. Saumweber, A. Huser, C. Eschbach, B. Gerber, et al., "The complete connectome of a learning and memory centre in an insect brain," Nature, vol. 548, no. 7666, p. 175, 2017.

[2] M. Schleyer, T. Saumweber, W. Nahrendorf, B. Fischer, D. von Alpen, D. Pauls, A. Thum, and B. Gerber, "A behavior-based circuit model of how outcome expectations organize learned behavior in larval drosophila," *Learning & Memory,* vol. 18, no. 10, pp. 639–653, 2011.

[3] A. Wystrach, K. Lagogiannis, and B. Webb, "Continuous lateral oscillations as a core mechanism for taxis in drosophila larvae," *Elife*, vol. 5, p. e15504, 2016.

	Robot platform
ו ex-	We set up a robot platform, able to test alternative models using
vard	real sensors and actuators. Qual- itatively, the results obtained
the Its	the simulation.
)1.	RGB LED 2 microphones
aour ard.	camera (4) 5 ultrasonic sensors
	infrared sensors
with	A range of sensors can be used to represent the conditioned and unconditioned stimulus inputs
a re-	Camera: analogue of the olfac- tory sensing of the larva; e.g. colour can represent odour iden-
the	tity, and light level the odour in- tensity
	Ground infrared sensors: ana- logue of the gustatory sensing of
be-	represent sugar, and a dark floor, quinine