How the fan-shaped body can integrate differential
familiarity for route following in desert ants
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Introduction

» Desert ants use their visual memory to follow familiar routes and find their nest, and this is usually assumed to be processed by their mushroom bodies (MB).
» The MB output neurons (MBONs) are assumed to predict the scene’s familiarity, which they project to the fan-shaped body (FB) of the central complex (CX) through tangential neurons.
» We take a computational approach to explore how this familiarity input can be used by the FB to produce a target velocity for the animal, which can be used for route following.

1. Following recent understanding of the function of PFN and hA neurons in the FB [1, 2, 3, 4], we build a computational model that encodes the allocentric velocity of the animal.
2. We demonstrate computationally that columnar (FC or vA) neurons of the FB could encode the allocentric target velocity by integrating differential familiarity and the current velocity (hA).
3. We finally showed that this target velocity can be used by the PFL3 neurons to follow a familiar route and we suggested that the performance could be enhanced by the use of PFL2 neurons.
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decreasing increasing » Increasing familiarity shifts the target towards the current velocity.
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» As the agent always moves in the heading direction, the responses of hA
neurons are identical to the ones of PFNy neurons.

> This is due to forward speed, which silences PFN, neurons.
» The update rate of the FC (target velocity) depends on its a .

> High ap allows for stronger influence of the current velocity.

» The different (right or left) shifts in the connectivity of the EPG to PFL3
neurons ensures that at least one PFL3 vector is always non-zero.

» Responses in the lateral horns (LHs) and lateral accessory lobes (LALs) can build oscillation patterns.
» The oscillations can be a trade-off between stop-and-scan and moving forwards in straight line.
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