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Abstract

1. Key circuits for associative and reinforcement learning have been identified in the mushroom body neuropils of the insect brain [1, 2].

2. Detailed imaging, electrophysiological and structural data about the mushroom bodies in Drosophila melanogaster has led to the identification of a variety of microcircuits
involved in memory.

3. In [3], we propose a comprehensive scheme, based on the connectivity and the responses of identified neurons in the mushroom bodies.

> We link these known microcircuits together as an incentive circuit that acquires, forgets and assimilates associative memories over different timescales.
> We suggest that our novel dopaminergic plasticity rule increases the adaptation capabilities of the overall circuit.

About the mushroom bodies Model: the dopaminergic plasticity rule
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k'(t) is the KC activity.
Wt = 1 is the resting value.
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Results: classical olfactory conditioning

Selected neuron types Best fi DY (t) and DZ(t) are components of the dopaminergic signal, with a short and a long
time-constant respectively, that are key for explaining backward learning [5].
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_ Model: the incentive circuit
studies (data and method from [4]).

susceptible MBON
restrained MBON

long-term MBON

DAN
excitation
inhibition

attraction avoidance
(restrained) (susceptible)

(long-term)
phases: pre-training training post-training
shock / sugar delivery areas
Ay ; @ punishment > .—. @ ?—‘ 0 .'. < reward
®.

Results: modelling the behaviour attraction

avoidance
odour A/

attraction avoidance W/ (long-term)
‘@‘ (susceptible) (restrained)
SRR IS s » Susceptible (s) MBONSs underlie primitive memories. » Discharging (d) DANSs.
» Restrained (r) MBONs underlie flexible memories. » Charging (c) DANSs.

» Long-term memory (m) MBONS. » Forgetting () DANS.

] » Anatomically validated: each connection exists in the fly brain.  » Note: KCs are not shown.
0 |eoefARARRAR. . weGLLLLLLl ... A2 .....eef {

synaptic potentiation

e lvOOOO

synaptic depression

time (sec)

shock + shock + shock + sugar + sugar + sugar +
odour A/ odour A/

A

Cg vs C,

Results: modelling the neural responses

odour (CS) data

> We can repllcate | [ odour (CS), 5 shock (US), 100ms

extinction (E) x5

experimental
observations of the
response dynamics of
specific neurons

during odour-shock
demonstrating how the reproduced responses of the output neurons association in

could drive the behaviour of a virtual fruit fly, creating similar odour

unpaired (U) x5

reversal (R) x5

Preference Index (Pl)

repeat number of the experiment

We further verify the function of the incentive circuit by
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