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Abstract

1. Key circuits for associative and reinforcement learning have been identified in the mushroom body neuropils of the insect brain [1, 2].

2. Detailed imaging, electrophysiological and structural data about the mushroom bodies in Drosophila melanogaster has led to the identification of a variety of microcircuits
involved in memory.

3. In [3], we propose a comprehensive scheme, based on the connectivity and the responses of identified neurons in the mushroom bodies.
▷ We link these known microcircuits together as an incentive circuit that acquires, forgets and assimilates associative memories over different timescales.
▷ We suggest that our novel dopaminergic plasticity rule increases the adaptation capabilities of the overall circuit.

About the mushroom bodies

▶ Sensory input is projected
onto the calyxes, from
where the numerous
kenyon cells (KCs)
distribute it to the much
fewer output neurons
(MBONs).

▶ Dopaminergic neurons
(DANs) deliver
multi-dimensional
reinforcement signals and
modulate the
KC-to-MBON synaptic
weights.

Results: classical olfactory conditioning

▶ Our predictions correlate with 92 intervention experiments from 14
studies (data and method from [4]).

Results: modelling the behaviour

▶ We further verify the function of the incentive circuit by
demonstrating how the reproduced responses of the output neurons
could drive the behaviour of a virtual fruit fly, creating similar odour
preferences to the real flies.
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Model: the dopaminergic plasticity rule

▶ Update of the KC-to-MBON synaptic weights:

∆W ij
k2m(t) = δij(t)[k i(t) + W ij

k2m(t) − wrest]

▶ δij(t) = D ij
△(t) − D ij

▽(t) controls the learning at the KCi-to-MBONj synapse.

▶ k i(t) is the KC activity.

▶ wrest = 1 is the resting value.

▶ D ij
△(t) and D ij

▽(t) are components of the dopaminergic signal, with a short and a long
time-constant respectively, that are key for explaining backward learning [5].

▶ Depending on conditions, this synaptic modulation causes weights to stabilise or to increase
with positive feedback
▷ We exploit these properties to enable short- and long-term memories, respectively, to be

formed and forgotten in parallel for different contexts.

Model: the incentive circuit

▶ Susceptible (s) MBONs underlie primitive memories.

▶ Restrained (r ) MBONs underlie flexible memories.

▶ Long-term memory (m) MBONs.

▶ Anatomically validated: each connection exists in the fly brain.

▶ Discharging (d) DANs.
▶ Charging (c) DANs.
▶ Forgetting (f ) DANs.
▶ Note: KCs are not shown.

Results: modelling the neural responses

▶ We can replicate
experimental
observations of the
response dynamics of
specific neurons
during odour-shock
association in
▷ acquisition and
▷ variable forgetting

stages.

Conclusion

▶ The dopaminergic plasticity rule is an alternative to prediction
error plasticity rules, and within the incentive circuit can support
acquisition, forgetting and assimilation of memories.

▶ Different MBONs hold primitive, flexible or long-term memories,
supporting flexible exploration/exploitation trade-off in an
olfactory conditioning task.
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