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Abstract
Analysing the behaviour of animals and studying their brain structure is a common
way to create bio-inspired artificial intelligence methods. Fiddler crabs are animals
with specific limitations on their sensors that have a great ability of evading on the
presence of potential predators. In this project we study these animals with respect to
the physiology of their unique sensor – their vision – and their evading manoeuvres,
in order to create a machine learning model, which imitates this interesting behaviour.
More specifically, we propose a semi-supervised architecture of neural network, in-
spired by the structure of fiddler crabs’ brain and their evasion behaviour’s feedback
loops. We combine location specific visual units and LSTM recurrent units in order to
build a model capable to adapt this behaviour. We trained our model using a data-set
we created using data from experiments done with living crabs in their habitat. Com-
paring our statistical results of our model’s behaviour with the ones of the original
crabs behaviour we show that this model captured some key features of this behaviour
as well as it seems to behave quite realistic in the simulations. Therefore, we show that
it is reasonable to consider machine learning models as potential solutions in animal
behaviour adaptation problems.
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Chapter 1

Introduction

Artificial intelligence is defined as intelligence exhibited by machines. Studying the
behaviour of animals and trying to imitate it on machines is a common way of how
scientists approach artificial intelligence. This is because they think that animals’ way
of thinking is more simplified than the one of humans. Therefore, in order to reach
humans intelligence, which is a very challenging task, they think that trying to imitate
animals’ intelligence brings them closer to their goal, and we absolutely agree with
them. A very interesting aspect of the animals’ behaviour is when they are in high risk
conditions, where they try to make quick decisions and they are stressed. In this case
we say that most of the living beings use their instinct to make decisions.

In this project, we study the evasion behaviour in a specific species of crabs, the
fiddler crabs, and try to imitate it using artificial intelligence techniques. We chose
fiddler crabs to be our subject because some extended research has been done their
evasion behaviour, which seemed to be quite simple. However, studying their evasion
behaviour more carefully we discovered that it is not that simple, while it is highly
dependent on other contextual behaviours like homing and habituation. Moreover,
the limitation of these animals’ eyes peculiar resolution (Smolka and Hemmi, 2009),
the way they behave in high risk levels (Lima and Dill, 1990) and the mechanism
they use to integrate their home vector (Layne et al., 2003a,b) stimulated our interest.
In Chapter 2 we provide more extended details about fiddler crabs and their evasion
behaviour, while Chapter 3 describes how we enabled the biological limitations of the
animal.

Regarding the artificial intelligence techniques we use, they are inspired by the
physiology of the neurons in their brain, and the knowledge we have about the feed-
back connections and the open and closed loops in their behaviour (Land and Layne,
1995b). More specifically, we try to model their behaviour using neural architectures
and semi-supervised learning techniques, aiming to represent as accurately as possible
the information flow inside their brain regarding this behaviour. In order to imitate
their eyes’ neural model we use a locally connected sparse auto-encoder architecture,
inspired by Le (2013) and the monostratified neurons (Oliva et al., 2007) in the crabs’
brain (see Section 2.2.1). To imitate their behaviour we integrate their early past vi-
sual information and feedback of their motion in a recurrent architecture, building a
many-to-one decoder. In Section 4.2 we describe the structure of our model and how
we adapted the evasion behaviour in it.

1



2 Chapter 1. Introduction

In order to train our model we need a data-set. This data-set should contain infor-
mation from the crabs’ perspective, i.e. what the crab sees, where is the direction of his
burrow relatively to his orientation, etc. However, such a data-set does not exist, as we
are the first who try to adapt the behaviour of the crabs in a machine learning model.
For this purpose we created our own data-set using experimental data from the work of
Hemmi (2005) and Hemmi and Pfeil (2010). Section 4.1 summarises how we manipu-
lated these experimental data to create a data-set to train our model, as well as how we
visualise the data in order to understand what we see and check their correctness.

The measurements used for training our model were not sufficient to understand
whether our model performs correctly, adapting the desired behaviour. It was expected
that a small training error does not mean good behavioural adaptation. Therefore, we
proceed in a new set of experiments in order to analyse the adapted behaviour of every
model created, selecting a random sample of the training and test trials and checking
the performance of our model on them. A summary of these experimental results can
be found in Chapter 5 along with some quantitative results.

Project’s goals. The primary goal of this project is to have a machine learning model
that imitates as accurate as possible the evasion behaviour of fiddler crabs, using all
the limitations of the crabs’ physiology, providing a powerful tool that can be used
to analyse this behaviour. Moreover, we try to prove that there is a close relationship
between the structure of the model we should use and the physiology of the problem
we try to solve. For example, we try to imitate the crabs’ neural architecture which
is related with this specific behaviour, and we strongly believe that this way we can
model the behaviour better, preventing us from creating a super-crab which will use
very deep and complicated structure.

Our secondary goal is to apply it on the robot platform, as it would be interesting
to see how the crab reacts in a natural environment considering the noisy input of
his sensors, the error of his motors and his hardware limitations. This may enable
new ideas about the input and output of the model, and we can handle the hardware
malfunctions. However, the main purpose of this project is to provide a model that
embeds the evasion behaviour and can be further analysed using at least a simulation.

Motivation. Our motivation is more than a biological analysis of the evasion be-
haviour. Recent progress in robotics using machine learning and deep neural architec-
tures that can extract interesting features highly motivated us to approach the solution
on this problem using machine learning models. More specifically, the way Finn et al.
(2015), Fu et al. (2015) and Zhang et al. (2015) combine unsupervised and reinforce-
ment learning to train robot arms as well as the way Beer and Gallagher (1992) created
a neural-controller, inspired us to try using semi-supervised learning to achieve our
primary goal.

Furthermore, the biological motivation is the reason why we try to make our model
as simple as possible, so that it can be easily interpretable, and therefore we can anal-
yse its behaviour by observing different components of the model. However, models’
interpretation is a huge topic regarding machine learning and neural networks and we
do not focus on it on this project. Finally, we hope that the distinct components that we
build in our project will help the biological society in their analysis about the fiddler
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Chapter 2

The fiddler crab

Fiddler crabs (genus Uca) are semi-terrestrial arthropods, and more specifically de-
capods. It is easy to distinguish them from other crab species because of their sexually
dimorphic claws. Fiddler crab males sport one claw significantly larger than the other,
while the females cope with two small claws. Their carapace width vary from 1cm
to about 2.5cm, and their eyes stand on up to 0.86cm long stalks above their carapace
(Smolka and Hemmi, 2009), which is proportional to their carapace width, and they are
held almost perfectly vertical. Their name comes from the way males wave to females
using their major claw Land and Layne (1995a).

Like most of the animals, fiddler crabs rely on sensory information to guide their
behaviour. More specifically, their main input comes from their eyes, which are al-
most fully panoramic and have a peculiar optical and sampling resolution. Using their
eyestalks and the inner visual context of their eyes, they align them to the horizon, sep-
arating the sky from the ground with their eyes’ equator (Land and Layne, 1995a; Zeil
and Al-Mutairi, 1996). Their biotope helps them to detect the horizon as it is usually
flat, muddy and vacant, without obstacles that could penetrate the horizon, like trees
and big rocks, which could make this task much harder.

This separation of their visual system is very important, as different behaviour
strategies are used depending on the orientation of the stimulus. More specifically,

(a) Male fiddler crab Uca vomeris next to his burrow. (b) The compound eye.

Figure 2.1: Credits to Alkaladi and Zeil (2014)

5



6 Chapter 2. The fiddler crab

they tent to use different regions of their eyes’ cortex as input for enabling different
behaviours. This is a common strategy for animals, as using the whole visual field
of their eyes or their visual system in general is energetically expensive (Smolka and
Hemmi, 2009). For that reason, biologists usually split the compound eyes of fiddler
crabs into zones, naming dorsal and ventral for the upper and lower hemisphere of the
eyes, while a horizontal separation brings forth the frontal, lateral, caudal and medial
zones for the front, outer side, back and inner side region of the eyes respectively (Land
and Layne, 1995a).

In the next sections we describe in detail the topology of the compound eyes of the
fiddler crabs, their different behaviours and what activates each one of them, as well as
some basic structure of the neural connectivity of the their brain and how all these are
related the one another.

2.1 Morphology of the compound eye

Similarly to many insects, fiddler crabs have compound eyes. This means that
their eyes are composed by smaller visual receptors, called ommatidia. According
to Smolka and Hemmi (2009), a crab’s compound eye contain 7,971 ommatidia, each
of whom have different optical resolution which is related to their position on the cor-
tex. More specifically, ommatidia closer to the horizon in the frontal and caudal zones
have greater optical resolution than the ones in poles and on lateral and medial zones.

Similarly, the position of the ommatidia is not uniformly distributed on the eye’s
cortex, but they also have different sampling resolution with respect to the topology.
Therefore, close to the horizon in the lateral zone they have their greatest sampling
resolution, while on the medial zone and closer to the poles the sampling resolution
drops significantly (Smolka and Hemmi, 2009). Moreover, both optical and sampling

Figure 2.2: The resolution of the compound eye of the crab (Smolka and Hemmi, 2009).
The equator splits the eye in the dorsal and ventral zones, the first meridian (the one
which passes through the middle of the frontal zone) separates vertically the eye in the
lateral and medial zones, while the one which passes through the middle of the lateral
zone separates it to the frontal and caudal ones.



2.1. Morphology of the compound eye 7

Figure 2.3: Equirectangular map of the optical axes of fiddler crabs (Smolka and
Hemmi, 2009). Black and grey dots represent the position of the ommatidia on the
map, while the thick curve denote the perimeter of the crabs’ eye. Notice that there is
a 30◦ overlapping on the medial zone. The inset images point out relevant behaviours
to the specific region: individual recognition frontally (female carapace pattern), ter-
ritory defence laterally (male with major claw), eyestalk alignment medially (crab on
slope), evasion dorsally (terns).

resolution are noticed to be greater on the dorsal rather than the ventral zone.
As we mentioned before, the different zones of the compound eyes are related to

different behavioural strategies. This might be relevant to the variation of the optical
and sampling resolution. For instance, the low optical and sampling resolution in the
medial zone is related to the fact that fiddler crabs use this zone to align their eyes.
Next, we will describe the different zones of the compound eye.

2.1.1 Visual information zones

Fiddler crabs use their eyes as the main sensor to create a representation of their
environment. Their eyes are placed very close the one another, which makes almost
impossible the use of triangulation in order to compute depth information. Therefore,
they calculate the size of the surrounding objects using the number of ommatidia that
can detect them, and combine this with temporal information to calculate distances.

Their highest optical and sampling resolution is on the most important regions of
their visual field (Smolka and Hemmi, 2009), i.e. the horizon. This causes a distant
object on the ground to be observed at the horizon, while as it comes closer the lower
part of its body will be moving downwards away from it. For that reason, the vertical
angle increases rapidly as it comes closer, but the sampling resolution is getting lower,
because it gets closer to the lower pole. This lead to the fact that an object at a fixed
height above the ground will be sampled by the same number of ommatidia irrespective
of its distance (Zeil et al., 1986; Schwind, 1989; Dahmen, 1991). This property is
referred as the size constancy. However, the size constancy breaks down in ±5◦ from
the horizon, otherwise the sampling resolution should be infinitely high on this region.
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Having this in mind, we will discuss about the most significant relations between zones
and behaviours.

2.1.2 Vertical separation

In the ventral zone, as well as in the dorsal one, vertical sampling resolution decreases
dramatically away from the horizon, while the horizontal one is always higher than the
vertical. The ventral zone is mainly used for detection of social signals. The size of the
vertical part of a conspecific’s silhouette in crab’s eyes will remain the same indepen-
dently of their distance, but its horizontal size changes allowing the crab to distinguish
their size and distance. They can recognise the sex of the detected conspecifics in a
distance of 1.25cm, where they occupy about 7 horizontal ommatidia, while when on
3 horizontal ommatidia they treat them as females, waving them for courtship (Land
and Layne, 1995a).

The dorsal zone is mainly used for predators detection. Crabs calculate the size
and distance of potential predators similarly to the way they do it with conspecifics
on the ventral zone. Although they cannot be very precise about the size, they find
other techniques to decide whether a detected object above the horizon is a predator or
not. The optical resolution in this zone is quite higher than in the ventral zone while the
vertical one does not change much. This leads them to be able to detect birds when they
are on about 1− 2◦ above the horizon (Land and Layne, 1995a; Hemmi, 2005). This
happens as crabs give up their visual continuous sampling to achieve a higher contrast
and signal-to-noise ratio, which leads them in an early predator detection (Smolka and
Hemmi, 2009).

2.1.3 Horizontal separation

Compared to the ventral and dorsal regions, frontal and lateral zones contain the great-
est number of ommatidia. The frontal one has the highest sampling resolution, but a
relatively lower optical one. This region is used to recognise individual conspecifics,
as it has been discovered that in this region the sampling resolution is higher only for
UV signal, with whom they can recognise individual females by their carapace pat-
terns (Detto et al., 2006; Smolka et al., 2011a). Male crabs have been pointed out to
reorient to face the female crabs, while they keep other males laterally pointing them
with their major claw. Interestingly, the highest optical resolution in this region is not
on the horizon but 5◦ below it, which points directly to the top of another crab’s cara-
pace, while at this elevation they start being more precise about the size of what they
see below the horizon. Putting them all together, these are the best conditions for a
more accurate pattern recognition task regarding their neural complexity.

On the other hand, in the lateral zone of the crabs it has been noticed the highest
contrast sensitivity, having lower sampling resolution than in the frontal, but larger
receptive angle for each of the ommatidia. This allows them to detect small contrast
changes. To make clear why this is important, during forage excursions, fiddler crabs
align their body to the direction of their burrow, usually pointing it with their foraging
claw (Land and Layne, 1995b; Zeil, 1998; Zeil and Layne, 2002). The above combi-
nation of the resolutions makes easier for them to detect whether intruder crabs move
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Figure 2.4: The visual horizon of fiddler crabs (Land and Layne, 1995a). Above the
horizon he detects terns, wile below it tracks conspecifics.

towards to their burrow, so that they can run back and defend it. Therefore, the lateral
zone is used to detect intruding crabs.

The medial zone, has a very low sampling and optical resolution, and is mainly
used by crabs to align the visual fields of their eyes. However, when crabs decide to
get out of their burrow, they use the periscope strategy, staying inside their burrow
having only one of their stalks outside of it, scanning the world for potential predators.
Here this zone has a different role, as it ensures the full panoramic view of the crab.
The low resolution of this region comes in balance as there is a 30◦ overlap in the
visual field of the frontal and caudal parts of this region (Smolka and Hemmi, 2009).

Finally the caudal zone, is not referred much by the literature, but its purpose is very
similar to the frontal one. The difference from the frontal area is that the sampling and
optical resolution is lower, and the ommatidia space covers less surface of the eye than
the frontal and lateral regions.

2.2 Behaviours

As we mentioned above, stimuli on different zones of the eye of the crab trigger dif-
ferent behaviours. More specifically, a change in the visual context above the horizon
denotes danger for fiddler crabs, because they think that something big is moving, and
probably could harm them. On the other hand, if the stimulus is below the horizon,
it denotes that something of the same or smaller size is moving, which is probably a
conspecific. In this case they use a more complex mechanism to decide whether they
are in danger or not.

Fiddler crabs have many different behavioural strategies, each of whom is triggered
by different stimuli. Some of the known behaviours in fiddler crabs are the courtship
and the territory defence from intruding males crabs, both triggered by stimuli in the
ventral zone and include interaction with conspecifics, while the evasion behaviour is
trigger by stimuli in the dorsal zone and gives them a signal of risk of predation. Here
we focus on the interaction of the fiddler crabs with predators, and more specifically
on their evasion behaviour. However, we will also refer to other behaviours which are
summarised in Land and Layne (1995b).
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2.2.1 The evasion behaviour

The habitat of fiddler crabs usually is flat and muddy, with clear horizon. The great-
est enemy of the crabs are terns. These birds, opposed to eagles and other flying
animals, flight low scanning the crabs’ biotope for food (Smolka et al., 2011b). This
distinguish them from other potential predators, as they usually appear close to the
horizon (0− 5cm from it). When the crabs see a tern, their evasion behaviour gets
activated, which puts them in a great level of stress. This behaviour has three stages,
each of them triggered by different visual cues, activated in different risk conditions
and have different cost (Hemmi, 2005). For now, we assume that the crab is in foraging
excursion and suddenly a potential predator appears.

At first, an insignificant change on the dorsal zone activates the freeze stage. This
puts the crab in a low-risk level, and force him to stop foraging. The cost of this stage is
very low, as he can continue his foraging whenever he feels safe. The main purpose of
this stage is probably to reduce the probability of the crab to be observed by a potential
predator, as a moving object is easily observed opposed to a motionless one. If the
stimulus fades, the crab continues his foraging excursion.

In the case where the stimulus insists and additionally flickering, elevation differ-
ence or increasing apparent speed is noticed, the risk level increases putting the crab
in a great stress level. This lead him to proceed to the next stage, initiating a quick
and sudden run back to his burrow, where he waits outside and continue observing the
threat. This stage is called home run, and reduces the risk level of the crab significantly,
as he is very close to his burrow safety. However, this stage has great cost, as the crab
has to leave his foraging place and try to find another one in case of a false alarm.

Looming or increase in the apparent size of the observed object are the criteria to
activate the final stage of the evasion behaviour. The crab drops his eyestalks and hide
inside his burrow, performing the burrow descent stage. This action drops the risk of
the crab to zero, as the tern cannot find him anymore. However, the cost of this stage is
very high, as the crab has to perform the periscope strategy, revealing himself to check
for potential predators before he starts his new foraging excursion, putting himself in
great risk.

One or two evasion systems? The evasion behaviour, as we described it, involve
only the case of burrow holder crabs. However, the behaviour of the crabs in herds is
quite different. Here the freeze stage does not change, while it is obvious that there is
no burrow descent stage, as the crabs have no burrow. Instead of home run, crabs align
their bodies to have the predator on their side, so that they can run faster in the opposite
direction. Figure 2.5 shows how crabs achieve this alignment. We will name this stage
escape to distinguish it from the home run, as there is no home to run towards (Land
and Layne, 1995b; Hemmi, 2005).

The description of this behaviour is simplified, as it is only observed in a laboratory
environment (Tomsic et al., 2009; Oliva et al., 2007). However, crabs react with each
other when they are in their natural habitat, fighting for the closest available burrow,
or following the one another with the hope that they will easily find an empty burrow
to get hidden in. Other possible reactions include running to the sea to hide from the
predator, or trying to steal the leading crab’s burrow.
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Figure 2.5: Crab escaping from a threatening object, showing how the error angle from
the crab’s perspective, and the instantaneous angular velocity are measured (Land and
Layne, 1995b). The black dot is the threatening object, moving at the direction of the
corresponding arrow.

However, our knowledge of how fiddler crabs react on this situation comes from
a personal discussion with professor Jan Hemmi, and there is no published evidence
about that. As we are interested on how crabs behave in their natural habitat, and in
addition we need data to create our behaviour model, we cannot consider this situation.

The neuronal perspective Crabs learning-related system is quite robust, making
the study of the changes in the intact animals’ identified neurons manageable (Tomsic
et al., 2009). This is because an important part of their brain (the lobula) is located in
their eyestalks. This part of the brain contains a very important type of neurons, the
movement detector neurons or lobula giants, which strongly respond to moving objects
compare to stationary intensity changes (Oliva et al., 2007). Despite to their sensitiv-
ity to moving objects, these neurons are not sensitive to optical flow (Medan et al.,
2015). In addition, they respond to proprioceptive input from the legs (Medan et al.,
2007; Lozada et al., 1990). Therefore they could process contextual information and
be useful for the path integration task through the evasion behaviour (Hemmi and Zeil,
2003a,b). In addition they show some memory capacity, which is probably respon-
sible for their habituation (see next section). This reveals a strong stimulus-content
association, which lasts for more than 24 hours (Hemmi and Tomsic, 2012).

Oliva et al. (2007) state that there are 4 distinct classes of the LG neurons the
monostratified, 2 of whom (M1 and M2) are accountable for the looming stimuli re-
sponses. The M1 neurons’ receptive field has limited receptive angle (less than 90◦),
while they are oriented towards different parts of the visual cortex. More specifically
they compose a grid of 16 retinotopically organised units that map the entire azimuthal
space (Medan et al., 2015). On the other hand, M2 neurons are not orientation specific,
covering the whole panoramic view of the eye. These classes of neurons seem to be
determinant for the decision of when, how fast and on which direction to run during the
multistage evasion behaviour of the crabs, although they are not the unique parameters
of this complicated behaviour.
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2.2.2 Background behaviours

Fiddler crabs have a number of background behaviours that are running simultane-
ously with the foreground ones that mentioned before. The most important of them
is the homing behaviour (Layne et al., 2003a,b) which is actually a path integration
task. In order to find their way back home, fiddler crabs have to integrate their home
vector. Animals usually use landmarks, polarisation or other visual cues to find how to
return home. Crabs integrate their whole excursion path to compute their home vector,
memorising the distance and orientation of their home (Walls and Layne, 2009). When
they decide to do a home run, they just follow this vector to find their home, running
straight to their burrow. Their natural habitat makes this feasible, as it usually has no
obstacles. While foraging, their excursion can be long, causing their burrow to disap-
pear from their visual field. Experimental results show that they stop visually tracking
their burrow in a distance of 10cm, while trying to track it back when they believe that
they are in the same range.

Another background behaviour is the habituation. As fiddler crabs are quite sen-
sitive in whatever penetrates their visual horizon, dead leafs and small insects could
trigger their evasion behaviour. Hemmi and Merkle (2009) claim that they can habitu-
ate on repeated stimuli. This means that for example a bush living in a know position
close to their home and the wind cause it to move, could scare them at the beginning,
but after some false alarms they learn that this is not something harmful and therefore
stop responding on it. The most interesting part is that they remember the position of
this stimuli creating relations to their burrow position, and after a burrow descent they
still remember their position. Tomsic et al. (2009) support that the tolerance of the
crabs’ long term memory depends on the complexity of their habitat. A simple context
will cause a big capacity for their long-term memory, while a complicated environment
weaken their memory. This background behaviour helps crabs to memorise the most
frequent stimuli, while forgetting the less frequent ones.

However, there are significant differences on how the different sexes behave, i.e.
female crabs habituate easier than males (Hemmi and Pfeil, 2010), and they do not have
a territory defence behaviour. Moreover, some behaviours can cancel one another. For
example, if a predator has been detected during courtship, the crabs will immediately
flee to their burrows. Nevertheless, background behaviours usually are not cancelled,
but we are still uncertain of what is happening when the crabs are inside their burrow
(Layne et al., 2003a).



Chapter 3

Imitating the anatomy of fiddler crabs

In order to create an accurate model of fiddler crabs for our experiments, we have
to consider the limitations of their anatomy as described in the previous chapter. This
means that we need a 360◦ view eye model with the peculiar resolution of fiddler crabs,
and a body platform that can navigate in every direction regardless the orientation of
the crab. In this chapter we will explain how we achieved to imitate these biological
limitations, using hardware and software solutions.

3.1 The visual system

As fiddler crabs’ receptive field covers all the 360◦ panoramic view, we should use
a camera that can provide us the essential field of view and process its output signal to
reach the desired sampling and optical resolution as described in chapter 2. However,
as the main purpose of the medial zone is to align the eyestalks of the crab, we decide
to merge the eyes of our crab to one, having two lateral zones rather than a lateral and a
medial. Therefore, we use the left hemisphere of the left eye and the right hemisphere

Figure 3.1: The Ricoh Theta S camera. It contains two cameras, one on each side,
having field of view of about 220◦ each, allowing sufficient overlapping space between
the two images in order to achieve better stitching, and as a result less distorbed 360◦

panoramic images.
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of the right eye to create our twin-eye representation.

3.1.1 The camera

The most suitable solution for the camera was the Ricoh THETA S. This choice
was quite straight forward, as the 360◦ cameras are a new technology, and most of the
cameras where not released yet. However, we tried to contact some producers in order
to purchase other models, but with no effect. For instance some of the other options
were the equivalent Nikon and Sony cameras, all of them were about to release after
July and most of them after October.

Other solutions include android mobile phones, whose camera can be used apply-
ing an additional lens on top of it to obtain the desired panoramic view. This solution
is cheap and clever, as we could extend our robot’s hardware with the one of the mo-
bile phone to use its resources and camera at the same time. However, this solution
put some undesirable limitations on our model, as it is not fully panoramic, and we
loose important information from the boundary angles near the poles of the dorsal and
ventral regions.

The shape of the Ricoh Theta S reminds us the eyestalks of fiddler crabs. This
makes our choice easier as we satisfy the desirable structure of our robot. Moreover,
the double camera is just perfect for our twin-eye representation, as it allows us to
handle each eye independently.

Connectivity. The camera provides three communication options: through wireless,
HDMI or USB connection. The HDMI option could give us a very fast transfer speed
and it would be a very good solution. Unfortunately, this option was rejected because
the graphical card of the computer should support HDMI input. These graphical cards
are quite expensive and are rarely provided for low-consumption computers, like the
ones we should use for the robot.

From a hardware perspective, the highest speed that we could achieve was though

(a) The stitched image, provided by the API of the
wireless connection with the camera in the lowest
available resolution. Notice that in the locations
where the two fisheye images are connected the
build-in merging algorithm of camera has signif-
icant error on the close distances.

(b) The raw fisheye image provided by the USB
connection. The images of the individual cameras
have been croped, rotated and concatenated back
to have the correct orientation.

Figure 3.2: Panoramic and fisheye images taken from the camera via wireless and USB
communication respectively.
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a wireless communication, because of absence of material. For that purpose we found
a way to communicate with the camera using the HTTP protocol and a provided API.
The camera could not stream video through this protocol, but it could send pictures ev-
ery 7 sec. This was unacceptable slower than the expected time and the requirements
of the projects. We assume that this delay was caused due to the fact that the cam-
era was processing the image in its internal processor in order to return a calibrated
image that was easily interpretable from humans (see Figure 3.2a). However, we are
still uncertain about the actual cause of this delay, as we could not find any further
information about the processor of the camera.

The last but most robust option was the USB connection. We could not find any API
or useful software to handle the specific model of the camera using USB connection.
Nevertheless, there was some software provided for older versions of the camera, but
non of them was compatible with this model. We finally achieved to communicate
with the camera utilising the OpenCV library (Bradski, 2000), and setting the camera
on the streaming mode. This configuration yield a frame rate of about 15fps, which
was acceptable, and provided us with an input of raw data, which was a double fisheye
image (see Figure 3.2b).

However, we achieved a faster communication using multithreading techniques,
reaching more that 30fps speed, but the camera could not provide new images at that
speed, and as a result we end up have multiple instances of the same image. Despite
this, because of the heavy processing of the image (see below), the number of requests
for a new image drops dramatically, making the multithreading solution the best option
for our communication with the camera.

In Appendix A we describe how we handle the fisheye images in order to create
full panoramic views. However, our sampling and optical resolution filters are applied
directly on the fisheye images, and therefore we do not use these methods. Despite
this fact, our occupation with them helped us to understand how we should handle the
filters in order to produce a realistic and non overlapping crab’s view representation.

3.1.2 Resolution of the compound eye

Every ommatidium on the compound eyes of the crab has different optical and sam-
pling resolution. Smolka and Hemmi (2009) describe the optical resolution using a
Gaussian distribution for each ommatidium, while the sampling resolution using a
combination of inverse sine functions. To build our resolution model we combine
information from Land and Layne (1995a) and Smolka and Hemmi (2009) to reduce
the complexity of the construction process, as we think that we don’t loose much pre-
cision. Furthermore, we are not modelling very accurately the optical resolution of the
eye, as due to the resolution of the camera and the computational complexity we could
not achieve an accurate optical resolution in real-time conditions.

3.1.2.1 Sampling resolution

In order to imitate the sampling resolution of the crabs’ eyes, we created a model
which is described in Appendix B. However, professor Jan Hemmi, from the Univer-
sity of Western Australia, kindly gave us his model from Smolka and Hemmi (2009),
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(a) The sampling resolution model of Smolka and
Hemmi (2009) for the left compound eye.

(b) The sampling resolution of our twin-eye sam-
pling resolution model, based on the Smolka and
Hemmi model.

Figure 3.3: The original and twin-eye smolka sampling resolution model.

which we named smolka model, because of the fist author’s name. Although we believe
that our custom model represents as accurately as possible the sampling resolution of
the crab’s eye, we use the smolka model, as it has been created using special equip-
ment and thus it is should be more precise than our custom one. Nevertheless, it would
be interesting to see whether or not makes any difference using the one or the other
model.

(a) View of the Gaussian contours of the
left eye’s optical resolution on the Y − Z
axes.

(b) Part of the resolution in a closer view.

Figure 3.4: Fitted Gaussian distributions on the sampling model.
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The smolka model This model consists of 7,971 ommatidia positions in spherical
coordinates (elevation, azimuth and radius). Figure 3.3a shows the sampling resolution
of the left eye. Notice that there is a 30◦ overlap on the medial zone, as described in
chapter 2. To create our twin-eye model we just drop the samples from the medial
zone, duplicate the lateral, and invert the y axis to create the half-right eye. Finally, we
merge the two half-eye to create the twin-eye of Figure 3.3b. This model has 9,740
ommatidia in total, 4,870 for each eye.

(a) The initial (unprocessed) fisheye image. (b) The result of the rotational blurring.

(c) The result of the Gaussian blurring. (d) The final result of the filtering, after combining
the Gaussian and rotational blurring.

Figure 3.5: The process of filtering before applying the sampling resolution.
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3.1.2.2 Optical resolution

The sampling resolution described previously gave us the centres of each omma-
tidium. However, each one of them has different receptive angle, which defines their
optical resolution. Following Smolka and Hemmi (2009), we tried to imitate the op-
tical resolution sampling the value of every ommatidium from a Gaussian distribution
fitted on the fisheye image, with mean the value of the pixel found using the sampling
model (see Figure B.4). The variance of the distribution was not explicitly specified
in any source, thus we softly put it to σ = 0.1, which was noticed to give a sufficient
coverage of the eye cortex.

As we had to place 2 dimensional Gaussians to the 3 dimensional space, we created
orthogonal multivariable Gaussian distributions, and set the variance of the Z axis to
zero. We then rotate them to be tangent to the sphere at the desired position, and
translate them to the correct position. The projection of the contours of Gaussians on
the Y −Z plane is shown in Figure 3.4. Fitting the Gaussians on the fisheye images of
the camera, we achieve a precise representation of the crabs visual field.

However, the computational cost to compute the final values of each ommatidium
was prohibitive. Therefore, instead of creating one filter for every ommatidium inde-
pendently to achieve the desired optical resolution, we tried to simplify the task by
filtering the image before we sample from it. For instance, we apply two different
filters: one for ommatidia placed at the central area of the fisheye image, and one for
those close to the perimeter of it. For the central pixels we use Gaussian blurring
with 5×5 kernel size to incorporate information from all the adjacent pixels of every
sample. For the peripheral samples we use rotational blurring to imitate the blurring
that we should have if we applied Gaussian blurring on the sphere-image. We finally
combine the two filters using a smooth transition between them to get the final filtering
of the image (see Figure 3.5).

Figure 3.6: The crab’s view image, created using Voronoi diagrams and the smolka
sampling resolution model.



3.2. The main body of the crab 19

Finally, to interpret how the sampling and optical resolution apply on our fisheye
images and create a what we call crab’s view, we use Voronoi diagrams, to fill bunches
of pixels with the colour of their corresponding ommatidia. The result is shown in
Figure 3.6.

3.2 The main body of the crab

As mentioned before, fiddler crabs can navigate in every direction regardless their
orientation. The ideal robot platform would look like the biological crab, with 8 legs
and 2 claws. However, legs would over-complicate the implementation of the project,
adding balancing and locomotion tasks. Due to the focus of our project on the eva-
sion behaviour of fiddler crab, the balancing and locomotion problem are of minor
importance.

Therefore we decided to use a wheeled mobile robot platform like the one in Figure
3.7. This 4-wheel omnidirectional platform, embeds motor encoders that allow us to
measure more accurately the actual ‘steps’ of our robot crab. The omnidirectionallity
is achieved combining the motions of the 4 Mecanum wheels to navigate in every
direction in the 2 dimensional space (x and y) regardless of the facing φ of the robot.

In practice, the wheel encoders were not very precise, requiring us to add an inertia
measurement unit or IMU on top of them to increase our certainty about our robot’s po-
sition and orientation. We noticed that fiddler crabs also have a correction system like
this, so we had the right to add this unit from biological perspective. More specifically,
Sandeman (1975) states that the vestibular apparatus organ of the crabs is probably
used to sense linear and angular accelerations.

The processing unit we chose was a fanless FitPC with AMD A4 Micro-6400T
quad-core CPU at 1GHz and 4GB RAM. This computer also has an embedded GPU

Figure 3.7: The fully omnidirectional platform.
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and Linux Mint operating system. Finally, the power resource comes from two separate
batteries, one for the processing unit and one for the Arduino and the wheels, to ensure
the stable current source for the computer. Figure 3.8 shows the complete set-up of the
robot platform.

Regarding the main body of the crab, it was part of another project and all the con-
figuration and communication with the PC was implemented by another student (see
Acknowledge). However, the decisions taken for every single part of the robot, as well
as the installation of the software to the PC were common work.

Figure 3.8: The final set-up of the robot platform after putting all the components to-
gether.



Chapter 4

Adapting the evasion behaviour

In the previous chapter, we described how we imitate the physical limitations of
fiddler crabs in order to build a realistic model of the animal. In this chapter we go
slightly deeper, trying to imitate their brain processing using machine learning tech-
niques. The aim of our approach is to show that it is reasonable to use machine learn-
ing techniques in order to reproduce animal behaviours and in our case the evasion
behaviour of the fiddler crabs. Our model consist of two encoder-decoder sets: the
optical and the behavioural one. The optical encoder-decoder aims to create an in-
formative representation of the visual field of the crab in a lower dimensional, neural
space. The behavioural encoder integrates the visual information and the behavioural
history, and using the respective decoder makes predictions about the next move of the
crab.

Later in this chapter, we summarise the related work in the field of adaptation in
behaviours, we explain the structure of our model, and we analyse every component
independently. Before that, we summarise how we build the data-set to training our
model using experimental data. More specifically, we focus on the data drawn from
the experiments in the research done in Hemmi (2005) and Hemmi and Pfeil (2010),
kindly provided by professor Jan Hemmi, and we extract the representation of the
visual field of the crabs using the ommatidia model of Smolka and Hemmi (2009), as
well as the translation-step and home vector for every time-step, creating a time-series
data-set.

4.1 Data processing

The data of Hemmi (2005) come from 527 experiments with fiddler crabs that took
place in the open field, using a set of fiddler crabs and dummy predators whose size
varied. The dummy predators were placed on a track which was passing over the field
were the crabs were placed and its height was adjustable, while a tracking system was
used to track the position of the crabs and dummy predators.

The information we used from this data-set was the crab’s carapace width wcrab, the
height of their eyes hcrab, the dummy predator radius ρdummy, the track height hdummy,
the index of the frame when the crab respond irespond , and the 2 dimensional position
of the crab and dummy predator in every time-step (xt

crab,y
t
crab) and (xt

dummy,y
t
dummy)

respectively, where t is the corresponding time-step, while the burrow is always at the
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position (0,0). All measures in this data-set are in centimetres.
The data of Hemmi and Pfeil (2010) are in a similar form and contain 254 runs.

However, we had to slightly modify them so that they are compatible with the ones
of Hemmi (2005). More specifically, the most important differences are that all the
measurements are in millimetres, while the height of the crabs’ eyes and crabs’ size is
not provided. For that reason we divide all the positions by 10 and fill all missing values
with the average values of the previous data-set, i.e. wcrab = 1.72 and hcrab = 1.98.
Moreover, the burrow position is also provided explicitly, so we subtract it of the the
position of the crabs and dummy predators to bring them in the same burrow-centric
coordinate system.

We tried to extract the input and output features of our model, using the provided
data. The inputs on our model are the ommatidia intensities, the home vector, and
the speed and direction of the crab on the previous time-step. The outputs are the
home vector, the speed and direction of the crab in the next time-step, as well as the
behavioural strategy that the crab decides to follow.

4.1.1 Physical features

To extract the speed and direction of the crab in every time-step as well as his
home vector was straight forward. First we transfer everything in the 3-dimensional
space, as we will use this representation for the reconstruction of the crabs visual
field. Therefore, the positions of the crab and dummy predator in time-step t can
be represented by the vectors (global)pt

crab = (xt
crab,y

t
crab,h

t
crab) and (global)pt

dummy =

(xt
dummy,y

t
dummy,h

t
dummy) respectively, while the position of the burrow is (global)pburrow =

(0,0,0). However, this representation is in the global (or burrow-centric) coordinate
system.

To transform this to the local (or crab’s) coordinate system (see Figure 4.1a for de-
tails), we have to subtract all the above vectors from the crabs position and rotate them
inversely from the crab’s orientation in the 2-dimensional space. The crab’s global
orientation is perpendicular to the global orientation of the home vector, pointing his
burrow with his left claw, assuming that his right claw is the major one. Here we
make the strong assumption that the crab has no error in his alignment with his burrow.
Hence, his orientation is given by

φ
t
crab = arctan

−yt
crab

−xt
crab
− π

2
(4.1)

The rotation matrix that describes the crab’s orientation is given by

Rt
crab =

cosφt
crab −sinφt

crab 0
sinφt

crab cosφt
crab 0

0 0 1

 (4.2)

Therefore, subtracting the crabs position from the dummy predator’s postion, and
then rotating it inversely with the orientation of the crab, we get the dummy predator’s
position from the crabs perspective. Hence,
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(local)pt
dummy = (Rt

crab)
−1 ·
(
(global)pt

dummy−(global) pt
crab

)
(4.3)

likewise, the home vector from the crab’s perspective is given by

(local)pt
burrow = (Rt

crab)
−1 ·
(
(global)pburrow−(global) pt

crab

)
(4.4)

In order to calculate the crab’s speed ( cm
time-step ) and direction of his translation

( rad
time-step ) in time-step t, we have to compute his translation-step vector which is given

by

vt
crab = (Rt−1

crab)
−1 ·
(
(global)pt

crab−(global) pt−1
crab

)
(4.5)

Therefore, his speed is described by the magnitude of his translation, and the di-
rection by its angle, calculated by

st
crab =

∥∥vt
crab

∥∥ , θ
t
crab = arctan

yvt
crab

xvt
crab

(4.6)

Finally, the distance from his home is the magnitude of the home vector, given by

dt
home =

∥∥(local)pt
burrow

∥∥ (4.7)

while its direction is the angular difference between the home vector of the previous
and the current time-step, which can be calculated using

(local)
∆pt

burrow =(Rt−1
crab)

−1 ·
(
(global)pburrow−(global) pt

crab

)
− (Rt−1

crab)
−1 ·
(
(global)pburrow−(global) pt−1

crab

)

∆φ
t
crab =arctan

y(local)∆pt
burrow

x(local)∆pt
burrow

(4.8)

To summarise, using the above equations we have extracted the features dt
home,

∆φt
crab, st

crab and θt
crab, which are the crab’s distance and direction from home, and his

translational speed and direction per time-step. However, the angular values are not a
very good representation of the orientation information for our model, as it is difficult
for the network to understand that practically an angle of π rad and −π rad (and so
on) point to the same direction. Therefore, we tried to create a unique representation
for every direction by encoding the values of the directions in an 8-dimensional vector
called compass, following Haferlach et al. (2007). Using this transformation, we create
2 new vectors It

φ
∈ [−1,1]8 and It

θ
∈ [−1,1]8 for the home and translation direction

respectively.
The values of each vector, correspond to 8 distinct azimuthal directions as shown

in Figure 4.1b, and they are calculated as follows

I∗ = cos(α−φ
∗), α = [0,45, . . . ,315] (4.9)

where φ∗ is the angle that we want to transform and I∗ is its corresponding compass
vector. Thus, we end up with the features dt

home, It
φ
, st

crab and It
θ
.
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4.1.2 Optical features

In order to reconstruct values that correspond in every ommatidium we need to draw
the visual field of the crab. For that purpose, we use the relative 3-dimensional coordi-
nates of the home vector and the dummy predator from the crab’s perspective. We as-
sume that the diameter of the burrow is the size of the crab, so we set ρburrow = 1

2wcrab.
The dummy predator is a sphere, so we can draw it on our canvas as a disk, which
axis passes from the crabs eye position. The burrow is another disk which axis is
perpendicular to the ground.

As the resolution of the crabs’ eyes is quite low, there is no need to use more than
20 points of the perimeter of the above disks in order to describe them without much
distortion. A greater number of points would increase the resolution of our disk, lead-
ing to an exponential increase on the computational cost of of this task. However, due
to the fully panoramic view, when a disk is at one of the side edges of the canvas, it
should appear in both sides of the canvas. We handle this issue, using k-means algo-
rithm with k= 2. When the distance of the centroids of the k-means exceeds a threshold
of dthres = 2.0, we split the disk into two parts, using the ommatidia belonging on each
cluster.

The next step is to draw the image of the visual field of the crab by projecting the
created scene to the canvas of the crab’s panoramic eyes. Therefore, we transform
all the 3D points to spherical coordinates, and we map the range of elevation and
azimuth angles in indexes of pixels, i.e. θ ∈ [−π

2 ,
π

2 ]⇒ u ∈ [0,320) and φ ∈ (−π,π]⇒
v ∈ [0,640) for the elevation and azimuth respectively, and we print the disks on the
canvas, using OpenCV tools to fill the shapes with colour.

In order to make the scene more realistic, we paint all the pixels below the horizon
with a sandy-brown colour to describe the ground, and those above it with a very

(a) The coordinate system of the crab on the x and
y axes. The angles denote the corresponding az-
imuth values of the visual field of the crab, while
the arrows show the direction of the positive values
of the axes.

(b) The compass encoding system for the represen-
tation of the angles in the crabs mind. The arrow
denotes the translation-step vector, and the 8 cir-
cles the encoded directions. The intensity inside
the circles show the value of every neuron.

Figure 4.1: Physical and neuronal representation of the orientation understanding of
the crab.
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Figure 4.2: Sample of the reconstruction of the visual field of the crab from the second
trial of the data-set of Hemmi (2005). We map the ommatidia values in an image using
the Voronoi diagram.

Figure 4.3: Sample of the reconstruction of the visual field of the crab using the inten-
sities of the ommatidia. Data used from the sixth trial of the data-set of Hemmi (2005).
We map the ommatidia values in an image using the Voronoi diagram.

bright blue for the sky. The disk corresponding to the predator is painted black, while
the burrow-disk is brown. We tried not to make the burrow’s colour very dark, so that
it will not make much difference of the rest of the ground in a great distance.

To get the values of the ommatidia, we calculate the corresponding pixel indexes as
we described above and we use their colour-values, although we first apply the essential
filtering described in section 3.1.2. Figure 4.3 illustrates a sample of the extracted om-
maditial values, mapped on the canvas using Voronoi diagrams. The final features are
the intensities of the ommatidia, i.e. the average value of their corresponding colour.
We use the intensity on the grounds that we are not sure about the number of channels
on the crabs’ eyes, as it may also have a UV channel, so using either the three-colour
channel or the intensities lead to a strong assumption. However, the intensities space
in less computationally expensive, so we end up with 9,470 intensities, one for each
ommatidia. Therefore, the feature-vector is vt

ommat ∈ [0,1]9,470.
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4.1.3 Stage features

To extract the stage feature from the data, we split every trial in 5 stages. For the
trials where the crab reacts we know the time-step when he first responds. This time-
step is the beginning of the evasion behaviour. We assume that from this time-step
until the crab start moving is the freeze stage. From that point till he momentarily
stops moving is the home run stage, as they should never stop during this stage. After
that, and until he never moves again is the burrow descent stage. In addition to the 3
stages of the evasion behaviour, we have the forage excursion stage, which contains all
the time-steps before the freeze stage, and the inside burrow stage, which contains all
the time-steps after the burrow descent stage.

The above stage extraction algorithm provides us with a categorical variable, which
we transform to an one-key or one-hot 5-dimensional vector, which values are zero
except the activated one, whose index corresponds to the key value. Therefore we
have the features pt

stage ∈ [0,1]5, where p is for ‘probability’, and it represents the
probability of the crab being in every stage.

Summary. The representation of our data contains all the above features in order to
create a data-set capable for training our model. More specifically, we use the data of
Hemmi (2005) to create our training set and the data from Hemmi and Pfeil (2010)
for the test set. For every time-step we have an input and output vector xt ∈ R9488 and
yt ∈ R23 respectively, which are the following

xt =
[

dt
home, It

φ, st
crab, It

θ, vt
ommat

]
, yt =

[
dt+1

home, It+1
φ

, st+1
crab, It+1

θ
, pt

stage

]
(4.10)

(a) Normal view. (b) Closer view.

Figure 4.4: Two-dimensional representation of an experiment. The red arrows show
the direction and speed of the dummy predator and the crab in every time-step, while
the black ones represent the orientation of the crab. The black dot denotes the position
of dummy predator at the time-step where the crab starts responding, while the yellow
one is the position of the crab at the same time-step. The green dot is the position of
the burrow.
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Moreover, we crop 5-time-step windows from every trial of the initial data, creating
batches of 5-time-step depth history for input and one time-step output. Finally, our
training set consists of 24,498 input-output pairs, and the test set of 45,578 equivalent
pairs.

4.2 The CrabNet

In this section we explain our model’s components in detail, as well as the parame-
ters we used and training methods in order to trained it. We decided to name our model
CrabNet due to it structure which is inspired by the crabs brain architecture (at least
for the visual part) and because of the specific problem that it has to solve, which is
to adapt the evasion behaviour of fiddler crabs. Briefly, our model is a multiple-input-
multiple-output neural network, which is trained using semi-supervised learning. Its

Figure 4.5: Our semi-supervised CrabNet architecture. The grey rectangles denote
data representations, the arrows show direction of the information flow and the circles
describe activation functions. The white circles are linear function (or absence of func-
tion), the sigmoid in circle means hyperbolic-tangent, the sigmoid in rectangle is the
logistic function, the rectified linear is the ReLU activation and the bell-shaped corre-
spond to probability using the softmax function. The weights next to the arrows mean
dot product with the incoming data while the empty arrows are just transferring informa-
tion.
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main components are its visual encoder-decoder (auto-encoder like architecture) and
the behavioural decoder which transforms the visual and feedback inputs to predictions
about the next time-step.

Figure 4.5 gives an illustration about our model. The visual encoder-decoder is
replaced with a simplified representation in order not to over-complicate the illustration
and confuse the reader. Before we proceed on its description, we will summarise
what we found in the literature about imitating behaviours using machine learning
techniques, after which we will explain the term lateral inhibition which will be used
later on the description of the visual encoder.

4.2.1 Related work

In late 90s, physiologists found dopaminergic neurons in the brain whose output
signals changes on errors in the predictions of salient and rewarding events, much like
reinforcement learning does (Schultz et al., 1997), leading in a relation to the theories
of adaptive optimising control. Following this research, Finn et al. (2015), Fu et al.
(2015) and Zhang et al. (2015) use combinations of reinforcement learning and deep
unsupervised learning to train a robot arm to do different tasks.

As regards the behaviour adaptation in robots, research started much earlier claim-
ing that the viable mechanism of the recurrent neural networks perform well on adapt-
ing the desired behaviour for the robot, creating an effective neural controller (Beer and
Gallagher, 1992). More specifically, they are enthusiast about the way they train the
network, measuring just the overall performance of the behaviour rather than the out-
put trajectories of the motors. Opposed to the former approach, they used supervised
learning to achieve their goal.

Others believe that artificial neural networks, and more specifically multi-layer per-
ceptions, are able to capture correctly animals’ neural responses and thus they are valu-
able tools to animal behaviour analysis (Ghirlanda and Enquist, 1998). In addition,
Dalziel et al. (2008) believe that non-linear models, such as artificial neural networks,
could be useful in understanding the mechanisms that control the animal moving pat-
terns. In their research they tried to model the relation between the animals’ contextual
information and their movement trajectory using probabilistic models.

Regarding the visual information processing, recently, artificial intelligence and
data scientists showed a great interest in how deep architectures of artificial neural net-
works can solve vision problems. More specifically, they achieved to solve challenging
computer vision problems and extract features from images, which could compress the
visual information in a few units, achieving almost perfect reconstruction of the orig-
inal image (Hinton and Salakhutdinov, 2006). We are talking about the auto-encoder
which triggered the interest of a great number of people, putting them to work on find-
ing more representative and fancy models. Masci et al. (2011) and LeCun (2012) give a
nice summary of them, while the former also present the convolutional auto-encoders,
which created a second wave of variations from people who tried to extract features
from images.

More recently, a deep architecture was proposed which was slightly out of the or-
dinary convolutional auto-encoder style, and showed some sensitivity in the human
bodies and faces as well as cat faces (Le, 2013). However, the training procedure was
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quite similar to the one Hinton and Salakhutdinov (2006) used for their auto-encoders.
The most interesting part of this model is that its layers are formed in very similar way
to the fiddler crabs’ M1 neurons as described by Oliva et al. (2007). More specifically,
they induce localisation without using convolutional layers, as they contain highly di-
rective neurons which are connected with a small region of the lower layer’s neurons.

Some of the approaches summarised above use unsupervised learning, aiming in
feature extraction while others involve supervised learning using recurrent neural net-
works. Baccouche et al. (2012) tried to classify videos using a Long- Short-Term
Memory (LSTM) network, and Xu et al. (2015) use a single image to extract multiple
outputs, like its caption. Both approaches use a convolutional neural network to en-
code the input information from the image and a recurrent neural network to decode it.
Another interesting recurrent approach uses the ‘attention’ mechanism, which extracts
words by moving the focus on different regions of the image, to generate captions (Xu
et al., 2015).

Our approach is a semi-supervised learning model, which propagates back the error
from the outputs of the model but self-correcting its visual encoding error using an
auto-encoder-like structure.

4.2.2 Lateral Inhibition

In neurobiology, lateral inhibition is the ability of an exited neuron to diminish
the activity of its neighbours, and disables the spreading of action potentials from the
former to the latter in the lateral direction. This could be quite convenient in the manner
of sensory perception due to the contrast that is created by the stimuli (Yantis, 2013).
When this occurs in primary visual processes (known as visual inhibition), it sharpens
the visual responses. For example, when we have a dark stimulus in light context the
centre neuron will send an exhibitory signal to the brain, while the neighbour neurons
will send an inhibitoty one, causing a high contrast signal.

This phenomenon usually is simulated using Gabor filters in analogue signals. We
use the zero-phase component analysis or ZCA in order to decorrelate the input at the
same time, as correlations in our input signal could reduce significantly the quality of
the encoded information by its spatiotemporal structure (Tetzlaff et al., 2012). More
specifically, ZCA is a whitening method, which transforms our input to white noise
signal. For instance, a white noise signal is uncorrelated and has variance equal to one.

Whitening. The most common whitening transformation is the principal component
analysis or PCA whitening. However, this transformation of the images causes loss of
the regional information, leading to more abstract representations, which are far away
from our expectations of the lateral inhibition. In short, the PCA whitening extracted
some features which seem to be sensitive in the elevation of the predating and homing
stimulus. On the other hand, ZCA extracted features that simulate better the visual
inhibition phenomenon and we finally decide to include it as a first processing step in
our visual model. An analysis of the results of the whitening methods can be found in
Appendix C.

Other transformations that are usually used in visual signals instead of whitening,
are the decorrelation, which removes the correlations of the signal leaving the vari-



30 Chapter 4. Adapting the evasion behaviour

ances intact, the standardization, which set the variances of the covariance matrix to 1,
but keeps the correlations, and the colouring, which transforms a vector of white ran-
dom variables into a random vector with specified covariance matrix. However, non
of these transformations induces lateral inhibition (similarly to PCA), and thus we did
not consider using them.

Zero-phased Component Analysis. The ZCA whitening is a linear transformation
of the data that converts them to white noise signal. In order to do this we just need
a wZCA ∈ RD×D weight-matrix, where D is the number of dimensions of the signal,
whose dot product with the input will produce the whiten signal, i.e. xt

white = xt ·
wZCA. The wZCA matrix can be computed using the eigenvalues and eigenvectors of
the covariance matrix of our data. We create the covariance matrix of the data as
follows

C =
1
N

XT X (4.11)

where X is a N ×D matrix, containing the intensities of the ommatidia for all
the available time-steps, N is the total number in instances and D is the number of
ommatidia. We can rewrite the covariance matrix equation as a function of the stacked
eigenvectors matrix E and the diagonal matrix D, which diagonal elements are the
eigenvalues

C = EDET (4.12)

The calculation of the E and D matrices can be done using singular value decom-
position (SVD) or by simple linear algebra routines. The “normal” PCA whitening
weight-matrix then is wPCA = D−

1
2 E. To create the ZCA weight-matrix we rotate the

wPCA using the eigenvectors matrix E, to bring the features back to their initial posi-
tion. E is an orthogonal matrix, which will not affect the whiteness of our data. Hence,
the ZCA weight-matrix is given by

wZCA = ED−
1
2 E = C−

1
2 (4.13)

4.2.3 Optical encoding

So far we explained the necessary terminology regarding our visual encoder, but we
did not describe how we use these techniques in our model. In this section we will
describe a crucial component of our model, the visual encoder. The purpose of this
encoder is to create an informative representation of the visual field of the crab, using
a small population of neurons. This is important as it will make the interpretation of the
individual neurons’ activation easier, while its structure is closer to the actual structure
of the optical neurons in the crabs brain.

To begin with, fiddler crabs benefit from lateral inhibition (Palmer, 2012), which
seem to help them distinguish the direction of a motion in their visual field. Thus, we
process the raw ommatidia input (vt

ommat ∈ [0,1]9470), whitening their optical signal and
introducing lateral inhibition at the same time using zero-phased component analysis
(ZCA). This is the first processing step of the visual input in our system, which is a
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Figure 4.6: The optical encoder-decoder of our model. The rectangles correspond
to representations of the data, the arrows show the direction of the information flow,
the circles describe the activation functions (the rectified function corresponds to ReLU
activations and the sigmoid one to the logistic). The weights next to the arrows denote
dot product with the corresponding output from the previous layer, while the two views
of the spheres illustrate the regions from where we draw the input for the M1 neurons
and represent the separation of the input signal to these regions.

linear transformation and does not reduce the dimensionality of the input signal (vt
ZCA ∈

R9470).

In Section 2.2.1 we mention the monostratified family of neurons in the lobula part
of fiddler crabs’ brain. We imitate this structure of neurons, generating 32 M1 (vt

M1 ∈
R32
+ ), and 32 M2 neurons (vt

M2 ∈ R32
+ ), the activations of whom compose the encoded

representation of the visual field (vt
M ∈R64

+ ). More specifically, each of the M1 neurons
point in a different direction of the panoramic view of the crab, and allows inputs
only from a range of 90◦ horizontally and vertically. The direction of the neurons is
homogeneously distributed in all the zones of the eye, i.e. every zone is covered by
16 neurons (but every neuron does not cover only one zone). Each of the M2 neurons
covers the entire panoramic view, allowing connections from every possible direction.
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We stack this bio-inspired layer on the top of the ZCA linear layer and add rectified
linear unit (ReLU) activations to incorporate non-linearity.

We choose ReLU activations as biological eyes seem to use similar activations in
the first stages of processing (Glorot et al., 2011) as well as it brings sparsity and
faster convergence during the training procedure. This activation function is also more
computationally efficient, as it induces only comparisons instead of multiplications
and is defined as

f (x) = max(0,x) (4.14)

The visual decoder is a simple dense fully connected layer, which is placed on the
top of the encoded representation. Its activations come from the logistic sigmoid func-
tion, and its output is a reconstruction of the original visual signal (vrec ∈ [0,1]9470).
The purpose of this decoder is to achieve better internal representation of the visual in-
put, following the semi-supervised learning idea of Harvey and Pal (2015), and seems
to help the network to find better solutions using less training data similarly to the
Ladder networks (Rasmus et al., 2015).

In this layer we choose the logistic sigmoid activation function as we want its
output to give values in range [0,1]. Although the range of the whiten-input’s values is
from about −73 to 16, we try to reconstruct the original visual input of the eyes as we
assume that the whitening process is part of the encoding.

Further approaches. We tried to train our crab’s eyes system disconnecting them
from the rest of the ‘brain’, using fully unsupervised learning techniques like binary
and real-valued Restricted Boltzmann Machines (Salakhutdinov et al., 2007), auto-
encoders (Hinton and Salakhutdinov, 2006) and sequential auto-encoders with LSTMs
layers (Srivastava et al., 2015). Unfortunately, the results were disappointing, as they
could not create any good representation of the inputs and not helping at all the training
phase. More specifically, both simple and sequential auto-encoders treated the preda-
tion and burrow stimuli as noise, resulting in reconstruction images without predator
and burrow.

Regarding the RBMs, their representations were not interpretable, while their train-
ing was very slow. More specifically, the training of the M1 neurons was impossible
using this method, as the required memory and time was not available. Nevertheless,
we could train every neuron independently and then build the final layer by merging
their outputs, but this would not solve the real-time inference issue.

Our semi-supervised learning visual encoder achieved much better representations
than the above approaches, and provided informative encoding for the rest of the net-
work. This could also be related to the fact that the monostratified neurons also get
feedback from the crab’s motion neurons (Medan et al., 2007; Lozada et al., 1990).
Figure 4.6 illustrates graphically the optical encoder and decoder system of our model.

4.2.4 Behaviour decoding

Our decoder is a recurrent net with multiple inputs and outputs. More specifically,
it consists of a Long- Short-Term Memory (LSTM) network, which inputs are the en-
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Figure 4.7: The structure of an LSTM unit. The grey rectangles denote data repre-
sentations, the white thick arrows show data flow outside of the neuron while the black
thin lines and arrows show internal connections. Weights on arrows mean dot product,
while the black dots on the net are element-wise multiplications. The sigmoid in a circle
is usually the hyperbolic-tangent activation, while in a rectangle is always the logistic
function. The plus in the circle denotes summation.

coded representation of the visual input (vt−1,...,t−5
M ∈R5×64

+ ), the direction (It−1,...,t−5
φ

)

and distance (dt−1,...,t−5
home ) of the burrow and the direction (It−1,...,t−5

θ
) and speed (st−1,...,t−5

crab )
of the 5 last steps of the crab, and its output consists of 16 hidden units. The activations
for the gates of the LSTM are logistic sigmoid as they are used to open and close gates,
while the input and output activations are the hyperbolic-tangent function as suggested
by their authors.

On the top of the LSTM network we put the multiple outputs of our decoder. These
are the distance and orientation from home in the current time-step (dt

home and It
φ
), the

speed and orientation of the translation in the current time-step (st
crab and It

θ
) and the

probabilities of the crab to be in every stage (pt
stage).

Long-Short Term Memory units

Recurrent neural networks (RNNs) are models that can handle spatiotemporal sig-
nal. Their basic idea is to incorporate units with recurrent connections (also called
recurrent units) which save their ‘state’ in every time-step and use it in the next ones.
A network with recurrent units is therefore called recurrent neural network. A very
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informative review of the delay and recurrent networks can be found in Lippmann
(1989).

However, the training of these networks to incorporate long part of their input his-
tory was hard because of the vanishing gradients problem (Pascanu et al., 2013). The
Long- Short-Term Memory (LSTM) units are a variation of the recurrent units which
solves this problem allowing the back-propagation of the gradients without problem for
more than 1,000 history time-steps. Their ‘secret weapon’ is their gated cell, where
they store information which can be used outside of their regular flow. This means
that, for example, information from time-step t may be also used in t + 5 without be-
ing used in the intermediate time-steps. Therefore, they can connect information from
non-consecutive time-steps.

This cell is sometimes referred as memory, as information can be stored in, read
from or written on it using analogue gates. These gates are implemented using hard-
sigmoid activations, as their output should be in the range [0,1], where 0 means closed
gate and 1 means open gate. We use ‘hard’ instead of ‘regular’ sigmoid activations
as the transition from 0 to 1 should be steeper resulting in differentiable (so analogue)
but closer to the step activation function. The information entering the LSTM unit
creates the main internal flow but also causes its gates to open or close with respect
to their trained weights. Then, using element-wise multiplications, the gates let the
information pass or block it.

There are 3 types of gates in these networks: the input, forget and output gates.
The input gate allows the incoming information to modify the state of the cell or block
it. The forget gate adjusts whether the cell will remember its previous state or forget
it. Finally, the output cell allows cell’s state to affect other neurons or not. Figure
4.7 witnesses the structure of an LSTM unit. The self-recurrent connection of the unit
makes sure that the state of the cell can be stable during absence of external inference.

Updating the state. In order to update the state of the LSTM unit and generate a
new output we follow the steps below. First we compute the values of the input gate
(it) and the candidate value for the state of the cell (C̃t) at time t

it = σ(wixt +uiht−1 +bi)

C̃t = tanh(wcxt +ucht−1 +bc)
(4.15)

where σ is the logistic hard-sigmoid function and b∗ is the bias. Then, we can
compute the values for the forget gate (φt) and the new state at time t

φ
t = σ(wφxt +uφht−1 +bφ)

Ct = it ∗C̃t +φ
t ∗Ct−1 (4.16)

where ∗ denotes the element-wise multiplication. Finally, we get the value of its
output gate (ot) and their outputs (ht) using

ot = σ(woxt +uoht−1 +bo)

ht = ot ∗ tanh(Ct)
(4.17)
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So far we have described how an LSTM unit works. An LSTM network consists of
many LSTM units similarly to the regular layers of a feed-forward neural network.
As you can notice there are two types of weights on the description above. The
W∗ weights are the input-to-hidden weights, while the U∗ are the hidden-to-hidden
weights, that are responsible for the recurrent connections.

Notice that while feed-forward networks usually create mapping between a single
input-output pair, recurrent nets can map one input to many outputs, many inputs to
one output, and many inputs to many outputs (i.e. translation). In our model we use
the second case, using multiple inputs (i.e. the early history of the crabs input) and one
output, the prediction of his next decision.

4.2.5 Training the model

In the previous sections we already described the components of this model, and
explained the reason we selected this structure. In this section we will describe its pa-
rameters, how we selected them and how we managed to train our model. Most of our
models were trained on a GPU, while some other on a ‘super-computer’ with enough
memory and CPU power to train as efficiently as possible the networks. However, the
GPU machine runs much faster allowing us to train at least one model per day, while
the CPU one need almost 2 days to train a network, but it has more memory and can
train big networks.

Our complete model uses both M1 and M2 neurons, and we always train this on the
CPU machine as the memory of the GPU was not enough to load the entire network.
Moreover, we noticed that for some reason it could not load either the model which
have only M1 neurons. This might be an issue with our keras implementation, as the
number of parameters was way smaller for the models with only M1 neurons rather
than the ones with only M2 neurons. Therefore, almost all the experiments have only
M2 neurons, while we compare the three types of models later in this section.

Parameter selection

Regarding the structure of our model, we always refer to the biological structure
in the animals’ brain as excuse for our decisions. But do these decisions help the
performance of our model? Here we will discuss about a numerous of parameters
that we used and compare the performance with or without them. During training, we
measure the performance of our network using the mean squared error (MSE) for all
the output features except of the stage for whom we use the categorical cross entropy
(CE).

Whitening and lateral inhibition. Whitening the visual input is theoretically correct
both from the biological and information-theory perspective. Our experiments show
that indeed this first stage of processing of the visual signal helps the network to cre-
ate more informative representations of the input data, while at the same time boosts
the performance of our model. However, lateral inhibition did the greatest difference.
Whitening using PCA result in quite better performance, but the ZCA boost the perfor-
mance much more, almost eliminating the mean squared error (MSE) of the training
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no whitening PCA whitening ZCA whitening
dhome 112.4419 8.1551 0.0854
Iφ 0.0223 0.0218 0.0180
scrab 1.7370 1.6815 0.0563
Iθ 0.4162 0.3716 0.1258
pstage 1.2434 0.6548 0.0100

Table 4.1: Cost for different whitening methods. The cost is measured using the mean
squared error, except of the stage’s cost, which is the categorical cross entropy. The
bold results shows the model with the best performance.

set.
In Table 4.1 we can see the cost for every output of our model for different whiten-

ing methods. In this table we can see that the outputs that are affected the most of the
visual input are the crab’s belief about his distance from his burrow, and his current
stage. We suppose that his task to find his burrow distance is connected with his ven-
tral visual field and the task of finding his stage is using the entire view. Regarding his
burrow distance, the above result is reasonable, as fiddler crabs can measure distances
below the horizon precisely, using the vertical number of ommatidia that the object
occupies. As for the stage, this means that the model did not learn time-series routines
regardless the predation’s visual cues, but it probably learnt these cues in its own way.

History time-steps. To predict the values of the features for the next step of our crab
we integrate through his last 5 time-steps. We pick this values using the information
we have about what visual cues trigger the evasion behaviour of the crab. More specif-
ically, we believe that the crab can estimate his home vector using only one previous
time-step. However, in order to estimate in which stage he is, he needs more time-
steps. For instance, to detect the flickering visual cue he needs to integrate at least 3
time-steps in the extreme case where the flickering is very fast (visible in the first and
third but disappear at the second time-step). Therefore, 5 time-steps give a greatest
tolerance for the flickering visual cue. Estimating the translational vector is the most
challenging task, as it has to integrate the previous stage and home vector in order to
calculate it.

However, we tried different values of the history length to confirm our decision.
More specifically, we tried to feed our network with 1, 3, 5, 10 and 30 past time-steps,
using the same configuration in every case. As expected, using a single past time-step
caused the network to perform poorly, while increasing their number the error dropped.
However, for more than 5 time-steps, the crab started learning the experiments their-
selves, memorising the routes. This resulted in poor performance due to over-fitting.
Table 4.2 summarises the cost for every output during this experiment.

Dropout. A useful technique that is used in order reduce over-fitting in neural net-
work and create more robust and accurate predictions is to train different models, with
different initialisation and then combine their output probabilities usually by averaging
over them. Dropout is a technique that randomly deactivates a percentage of neurons
in the network, imitating this combination of the models (Srivastava et al., 2014).
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Past Time-steps 1 3 5 10 30
dhome 0.0967 0.1287 0.0966 0.1312 0.0766
Iφ 0.0184 0.0168 0.0182 0.0205 0.0178
scrab 0.0550 0.1106 0.0598 0.0647 0.0439
Iθ 0.1309 0.2112 0.1312 0.1589 0.0905
pstage 0.0098 0.0496 0.0117 0.0129 0.0092

Table 4.2: Cost for varying number of past time-steps. The cost is measured using the
mean squared error, except of the stage’s cost, which is the categorical cross entropy.
The bold values indicate the two models with the best performance.

We tried to use this method aiming to make the connections of our network more
sparse and prevent over-fitting. We tried different configurations of dropout proba-
bilities for our recurrent decoder, dropping either input or hidden neurons (or both).
Table 4.3 shows the training results. It is clear that this method did not help the per-
formance, as it increased the error of our network and lead the crab to perform worse
during the evasion behaviour. More specifically, the greatest difficulty was in identi-
fying his stage, where his performance dropped leading to inaccurate decisions about
his moves. We attempt to add dropout in both the input and the recurrent connections
of the LSTM, but with no better results. Therefore, we do not use this method in our
model.

Visual encoding dimensions. We decided to use 64 encoding neurons for the visual
input, trying to capture a potential stimulus in our visual field with at most 40 neurons
(8 M1 and 32 M2). This would be enough to encode the most important information.
However, we tried other populations of M2 neurons in range [8,512], which training
results are summarised in Table 4.4, while their experimental results are in Section 5.3.
In short, we observed over-fitting in increased number of neurons, while less neurons
were not enough to encode the visual information.

The feedback features. We give as input to our model the outputs of its previous
decisions as well as the newly generated scene. This is actually an external recurrent
connection by itself which creates correlation among the current output of the network

dropout (W & U) 0.0 & 0.0 0.0 & 0.5 0.5 & 0.0 0.5 & 0.5
dhome 0.0966 0.0991 0.7272 1.1095
Iφ 0.0182 0.0190 0.0215 0.0215
scrab 0.0598 0.0599 0.2828 0.3741
Iθ 0.1312 0.1997 0.3209 0.3302
pstage 0.0117 0.0110 0.2914 0.3513

Table 4.3: Cost for varying dropout probabilities. W states for the input connections,
while U for the hidden ones. The cost is measured using the mean squared error,
except of the stage’s cost, which is the categorical cross entropy. The bold values are
for the models with the best performance.
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to the five previous ones. Actually, this is quite an essential connection, as it builds a
smoother behaviour establishing strong connections with the adjacent time-steps.

Removing one of the input features, we noticed that the crab becomes unstable.
More specifically, removing the feedback of the home vector, the crab understands
that he has to run, but he runs in random direction. This means that he needs the
feedback of where was his home in the previous time-step to find out where it is in the
next one. Cutting the feedback connection of his past translations, causes an abnormal
trajectory of his motion, which seems like trying to escape every time to a different
direction.

Finally, the training performance is much worse when we remove parts of contex-
tual feedback. All these show that our model needs to integrate information from all
these features to find the best solution which will be closer to the behaviour we try to
imitate.

The behaviour stage as output. One of the outputs of our model is the ‘stage’ of the
crab. When we first thought about the structure of our model, this output feature was
aiming to observe if the crab understands when he is in danger or not depending on his
corresponding input. Therefore, the plan was to drop this feature when we would end
up with a good model. However, it seem to be a very important feature. Dropping this
output feature causes a significant decrease in the performance of our model.

It seems like the back-propagation of this feature’s error influences the internal
states of our LSTM network forcing them to open and close some specific gates for
different behavioural strategies. However, we didn’t investigate further the reason why
the network needs the output stage feedback and therefore this is just our belief about
this dependence. Moreover, we did not try to give the stage output as feedback input
to our model, but it would be interesting to investigate this structure in the future.

Recurrent visual input. Another parameter that was in our concern was whether
we should use recurrent connections on the visual encoding of our model. From the
biological perspective, introducing recurrent connection in the eyes of the crab would
be inaccurate as we have no such information regarding the literature. However, we
tried to replace the simple units of our visual encoder with LSTM units and the result
is described by Table 4.5.

We can see that the cost is much lower in all outputs, but the most impressive is
orientation of the translation. This means that using recurrent units helps the crab to

dimensions 8 16 32 64 128 256 512
dhome 0.0736 0.0708 0.0854 0.1242 0.2707 0.7031 1.4043
Iφ 0.0202 0.0192 0.0180 0.0181 0.0186 0.0211 0.0215
scrab 0.0729 0.0606 0.0563 0.0643 0.1262 0.2991 0.6112
Iθ 0.2288 0.1748 0.1258 0.1398 0.2336 0.3153 0.3443
pstage 0.0203 0.0113 0.0100 0.0184 0.0658 0.1819 0.4346

Table 4.4: Cost for varying number of M2 neurons. The cost is measured using the
mean squared error, except of the stage’s cost, which is the categorical cross entropy.
The bold values are for the models with the best performance.
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Visual Input Dense Recurrent
dhome 0.0854 0.0297
Iφ 0.0180 0.0127
scrab 0.0563 0.0395
Iθ 0.1258 0.0365
pstage 0.0100 0.0044

Table 4.5: Cost for different types of visual layers. The cost is measured using the mean
squared error, except of the stage’s cost, which is the categorical cross entropy. The
bold values are for the models with the best performance.

identify the direction on which he should run. Despite these very impressive numbers,
the behaviour of the crab with this model was not better than the one with the non-
recurrent units. Thus, this was a sufficient reason not to use this approach.

M1 and M2 neurons. An interesting investigation would be to observe how the crab
behaves using only one type of monostratified neurons or both. We call M1 model the
one that contains only M1 neurons, M2 the respective for the M2 neuros and M1 & M2
the full proposed model. As we mentioned before, in all the reported experiments we
use the M2 model, because we could have faster results and can test more cases. When
we started our experiments, the M1 & M2 model was always outperform the other
networks, in every different parameter we used. So we decided to tune the parameters
using the M2 model and then just pass them to the final in order to have our model
trained with the best possible configuration.

However, when we tried our parameters on our M1 and M1 & M2 models they both
performed poorly. More specifically, the error of both models was relatively big and
their behaviour by far different from the M2 one. This was not an expected result, and
we think that we were using a wrong data-set on the CPU computer (where we trained
both networks), and this caused this odd behaviour. The errors of the three networks are
reported in Table 4.6, while their behaviour was very simple: the crab did not respond
at all using both networks, and more specifically he was always in ‘forage-excursion’
stage without ever changing his home and translation vectors’ values. Therefore, all
the experiments and the statistical results are using the M2 model.

Visual Input M1 M2 M1 & M2
dhome 0.4126 0.0966 2.3590
Iφ 0.0216 0.0182 0.0218
scrab 0.1826 0.0598 0.5943
Iθ 0.3154 0.1312 0.3508
pstage 0.3147 0.0117 0.5279

Table 4.6: Cost for different types of neurons on the visual encoder. The cost is mea-
sured using the mean squared error, except of the stage’s cost, which is the categorical
cross entropy. The bold values are for the models with the best performance.
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Many-to-many LSTM. As we already described, our network has input feedback
from multiple time-steps and its output is the decision of what to do on the next
one. Therefore, it is a many-to-one architecture, according to the corresponding LSTM
structure. However, a many-to-many architecture could be absolutely reasonable, as
we want to translate the input of the crab in every time-step to another input for the
next time-step and so on. The reason why we decided not to use this approach is be-
cause this could be perfect for off-line decisions, but we cannot think of how we could
use it for our on-line decisions on the robot. Instead, what we did is to use only the last
output of this returned sequence as our model’s output.

4.2.5.1 Training details

Our model was created in Python using the ‘keras’ library (Chollet, 2015), which
is running on top of Theano, a neural networks’ toolbox for GPU optimisation. The
model was trained using the Adam optimisation algorithm with Nesterov momentum
(Kingma and Ba, 2014), also known as ‘Nadam’. This optimiser seems to outperform
the until recently state-of-the-art RMSprop optimiser for deep architectures (Tieleman
and Hinton, 2012), as the momentum helps the weights to find a better solution, closer
to the global minimum. We used the default hyper-parameters of keras for this algo-
rithm. All models were trained for 200 epochs using mini-batches of size 200.

We initialise the weights of the model using a method which integrates the number
of input and output units in every layer to find a good variance for the initial values
of the weights (Glorot et al., 2011). This method, widely known as ‘Xavier’, seems
to bring the distribution of the weights’ values closer to their final one, preventing
them from having values completely different of the real ones. Moreover, using this
method we can reach good representations of our model’s weights without pretraining
our network, and having a small or zero penalty on our final result.

Regarding the data-set, we add Gaussian noise η ∈ N (0,0.1) to the input omma-
tidia values but we leave the reconstruction’s target values clean, in order to help the
model distinguish the real noise of the predator and the burrow. This makes our crab’s
ability to understand what he sees more robust. We noticed that by adding the noise,
we boost the performance of the crab, and we believe that this is because of the ven-
tral zone of his visual field. As he sees his burrow always in the same direction, he
doesn’t need his vision on the rest part of the ventral zone, leading to zero weights on
these regions. The noise does let him to believe that these regions are useless, causing
some uncertainty about this ‘blind’ area. Therefore, his belief about the probability
that something could be there is not a zero anymore, but a very small value.
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Evaluation

As we already mentioned in Section 4.2.5, the MSE and CE costs used for training
the model cannot describe accurately the performance of the model on adapting the
evasion behaviour. Instead, they measure the performance of the model on predicting
the next time-step’s values. We name behaviour of the model the sequence of its
decisions during the experiment. Therefore, we measure the performance of the model
by observing its behaviour on a set of experiments from the data through a simulator
that we created.

In this chapter we describe how we created the simulations and we present some of
the experiments we did using it. We try to make a decent analysis of these experiments,
and comment on their results aiming on identifying potentially unnecessary or bad
correlations between input and output features. Finally, we present some quantitative
results of the experiments, trying to evaluate our model using similar statistics with the
ones of the living crabs (Hemmi, 2005) where our data come from. This could help us
to understand whether our CrabNet behaves similarly to the average biological crab.

5.1 Simulation

In order to visualise the output of our experiments, we built a simulator which takes
as input an experiment from the data-set and an already trained model, and creates a
simulation of the model’s decisions outcome. This helps us to track the crabs visual
field and his belief about his stage in every time-step as well as his excursion path
during the experiment. This way we can evaluate how well our model performs on the
training and test experiments.

Building the simulator

The aim of this simulator is to visualise the predictions of our models, in order to
evaluate the correctness of the imitated behaviour. The output of the model in the
current time-step is transformed internally into an input for the next time-step creating
a chain of decision driven from the previous decisions. The essential components of the
simulator are the model, the initial state of the crab (his initial distance and orientation
of his burrow as well as his translational vector and stage), and a buffer to keep track
of the early history of the crab’s decisions.

41
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Our model takes as input the buffer, i.e. the last 5 time-steps, in-order to predict the
corresponding features of the next time-step. Therefore, we initialise the buffer with
multiple instances of the first time-step to make sure that it is always full. Using the
buffer as input to the model we predict the home distance and direction, and the speed
and direction of translation of the crab for the next time-step. From these we can create
the translational velocity in the x and y axes as follows
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magnitude of this vector. Next, we update the current position of the crab by adding
this vector to his last position
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direction of the home vector, and align the crab to it by adding the error angle to his
current orientation. Hence,
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and as a result the current orientation of the crab will be φt
crab = φ

t−1
crab+∆φt

crab−
π

2 .
As the home vector should point on the left side of the crab (+π

2 ), we subtract π

2
to force the crab to keep its direction perpendicular to his facing vector. Using the
updated values of the position, and orientation of the crab as well as information about
the position of the dummy predator and the burrow from the data, we reconstruct the
visual field of the crab as we did in Section 4.1.2, and get the ommatidia values.

Finally, we update the buffer by pushing the new time-step features in it, and pop-
ping from it the oldest one. Repeating the above procedure for as far we want the
simulation to run, we create a real-time representation of consequences of the crab’s
actions, which we call behaviour of our model.

5.2 Representative runs

In order to evaluate the performance of our model we use the trade-off between the
crab’s translational step and his belief about his distance from his burrow, his respond
time regarding the visual cues, and his final position with respect to his burrow. In this
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(a) Top view of the trial. (b) Speed and home distance.

Figure 5.1: Trial 1. Result of the simulation. The yellow dot is the position of the crab
during the original response, the green dot is the position of the burrow. Yellow arrows
denote foraging, blue freeze, red home-run, magenta burrow-descent and green inside
burrow steps.

section we do not quantify these metrics, but we describe as accurate as possible the
key features of some of the experiments we did.

In this section we describe a sample of the experiments we did using the model
with the best performance so far. More specifically, we describe a set of 8 experiments,
which compose a range of different cases of predation for the fiddler crab, initialising
him in different positions with respect to his burrow and releasing the dummy predator
from different directions, speeds and heights.

(a) Top view of the trial. (b) Speed and home distance.

Figure 5.2: Trial 2. Result of the simulation. The yellow dot is the position of the crab
during the original response, the green dot is the position of the burrow. Yellow arrows
denote foraging, blue freeze, red home-run, magenta burrow-descent and green inside
burrow steps.
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(a) Top view of the trial. (b) Speed and home distance.

Figure 5.3: Trial 3. Result of the simulation. The yellow dot is the position of the crab
during the original response, the green dot is the position of the burrow. Yellow arrows
denote foraging, blue freeze, red home-run, magenta burrow-descent and green inside
burrow steps.

Trial 1. In this trial, we observed that when the apparent speed of the predator was
increased on the crab’s view, he started responding. His route back home was shorter
than it should be, and he understood that he was still in home-run stage regardless
that he stopped moving. We believe that this was because he could see his burrow.
His belief about his distance from home was correct regarding his speed, but he lost
some steps because he increased the home distance before his response without doing
any motion (see Figure 5.1). However, we noticed that for the time-steps 5− 32 he
was in home-run stage. This could explain why he reduced his distance from his
burrow, as he probably created a relation between the home-run and the reduction of
his distance from home. Nevertheless, when he starts running he reduce his belief
about his distance from his burrow much faster (see Figure 5.1b).

Trial 2. This time the crab responded slightly later than the expected, but his be-
haviour seem to be very natural (see Figure 5.2. More specifically, he stopped close
to his burrow and then he proceeded in a 2-step burrow descent, finally stopping in a
distance of 2cm from his burrow. We noticed that he is not correcting his alignment
with the burrow much in every step, but he does so at the end of his route and in the
‘inside-burrow’ stage. As he was able to see his burrow after the burrow descent, he
continue being in burrow descent stage. Regarding this, we noticed that when he be-
lieves that he is in his burrow (zero distance from home), he paralyses and sometimes
he manually increases his distance from home (without actually moving) in order to
release himself and run closer to his burrow.

Trial 3. This is another late-response trial, but with a descent behaviour, stopping
in a distance smaller than 10cm from the burrow (see Figure 5.3). At some point
during this experiment the dummy predator becomes huge, leading the speed to reach
its limits (≈ 11cm/time-step). This makes clear that one of the features that define the
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(a) Top view of the trial. (b) Speed and home distance.

Figure 5.4: Trial 4. Result of the simulation. The yellow dot is the position of the crab
during the original response, the green dot is the position of the burrow. Yellow arrows
denote foraging, blue freeze, red home-run, magenta burrow-descent and green inside
burrow steps.

speed is the apparent size, creating a significant correlation between the two of them.
The speed and the distance from the home seemed to interplay as they should do, and
at the end of home-run he tried to align himself with the burrow like he did in trial 1.

Trial 4. On this experiment our crab performed a very realistic evasion behaviour,
following all the stages from the foraging to the inside burrow. More specifically, there
was a smooth balance between the distance from the burrow and his speed during the
whole behaviour, while he stopped next to the burrow and performed burrow descent,
but this time he lost the burrow from his sight and stopped, changing to ‘inside-burrow’
(see Figure 5.4). Finally, and while in ‘inside-burrow’ stage, he tried to align himself
with his burrow.

Trial 5. Here the crab performs another quite natural trial, stopping at about 5cm from
his burrow. Although unsuccessfully, he tried to correct his final position regarding his
burrow, as he probably understand that he should not see his burrow (see Figure 5.5).

Trial 6. The experiment starts with the crab very close to his burrow (less than 10cm)
and in ‘burrow descent’ stage. He then perform a 5-step descent and changes to inside-
burrow stage. This shows that he relates the inside-burrow and burrow-descent stages
as adjacent. After 30 time-steps, when the dummy is really close, he increases the
home distance (without moving) making space for consuming some home distance to
get more translational speed.

Trial 7. This experiment shows that when the crab is in his burrow mentally (he is
in the ‘inside-burrow’ stage and his distance from his burrow is zero according to his
belief) and physically (he does not see his burrow), he stops being afraid of the dummy
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(a) Top view of the trial. (b) Speed and home distance.

Figure 5.5: Trial 5. Result of the simulation. The yellow dot is the position of the crab
during the original response, the green dot is the position of the burrow. Yellow arrows
denote foraging, blue freeze, red home-run, magenta burrow-descent and green inside
burrow steps.

predator. Here the predator passed by the crab and step over him becoming apparently
huge. In any other experiment we show the crab would be nervous in this situation, but
here he was stable and in ‘inside-burrow’ stage, without trying for further home-run
steps like in other experiments (see Figure 5.6).

Trial 8. In this experiment, the crab stops in 5cm distance from his burrow, while
he performed a moving ‘freeze’ step (see Figure 5.7). Despite this, his overall per-

(a) Top view of the trial. (b) Speed and home distance.

Figure 5.6: Trial 7. Result of the simulation. The yellow dot is the position of the crab
during the original response, the green dot is the position of the burrow. Yellow arrows
denote foraging, blue freeze, red home-run, magenta burrow-descent and green inside
burrow steps.
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formance was quite good, keeping all the desired metrics high and having smooth
trajectory and mostly natural behaviour. From these experiments we can see that the
model learnt the time-hierarchy of the of the stages, and shows that it always keeps this
hierarchy while making decisions.

5.3 Further experimental results

History time-steps. We tried to train our network using different number of history
length. More specifically, we tried to give feedback to our network using 1, 3, 5, 10
and 30 time-steps. Using 1 time-step, we actually do not let the model to learn time-
dependent features. The prediction of the stage was not depending on the previous
stages or features, but only on the current view and feedback. The crab was usually in
foraging and sometimes freeze or inside his burrow but rarely respond, and when he
did so, this lasted for a single time-step.

Three history time-steps seem to be enough to identify correctly the predator as the
responses of the crab were sensible. However, he could not find his way back home
correctly, missing his burrow. This usually led to a final distance from his burrow
of more than 20cm. In addition, he looks like understanding the correlation between
the translational speed and the distance from the burrow, reducing the distance with
respect to his speed, but not using the correct values. This means that, according to his
beliefs, his distance from home was reduced more than it should be reduced regarding
his speed.

It seems like the previous experiments have small time-horizon∗. Using 5 and 10
history time-steps the performance is much better. More specifically, the value he

∗With the term time-horizon we define the number of past time-steps that our model is able to look
through

(a) Top view of the trial. (b) Speed and home distance.

Figure 5.7: Trial 8. Result of the simulation. The yellow dot is the position of the crab
during the original response, the green dot is the position of the burrow. Yellow arrows
denote foraging, blue freeze, red home-run, magenta burrow-descent and green inside
burrow steps.
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subtracts from his burrow-distance has a very small error according to his speed and
believe about his distance. He identifies his stage more accurately than before and the
trajectory of his way back home looks quite smooth. However, using 10 time-steps
seems to over-complicate his way of thinking, as the performance using 5 time-steps
seem to be slightly better.

Visual encoded dimensions. We experimented with the encoded dimensions of the
visual signal, trying to use 8, 16, 32, 64, 128, 256 and 512 M2 panoramic neurons. We
noticed that for 8 M2 neurons the performance did not drop much. More specifically,
the corresponding measurements to the ventral zone (i.e. burrow tracking) were poor,
while the ones on the dorsal zone (i.e. detection of predators) were as accurate as
before. This shows that probably most of the neurons focus on the dorsal zone, leading
in small coverage of the ventral one. Despite this, the model performed quite similar to
the one with 32 neurons. Adding 8 more neurons (16 in total), we notice improvement
on the performance regarding the ventral zone. However, we noticed that he almost
never goes closer than 5cm from his burrow.

For more than 32 neurons we also have a reduce in the performance. It seems
like he extracts a great number of features from visual cues and combine them in
order to create a very complicated formula of the his burrow’s position. This shows
some over-fitting, while he seems to combines correctly the burrow-distance and speed
information. However, for very large number of neurons he started responding in all
stimuli due to a clear over-excitement (always a neuron is activated). Notice that the
number of the encoding neurons affect also the number of parameters in the LSTM
decoder, having 4,877,381 parameters in the case of 256 neurons, compare to the M2
model which have 620,281.

Cut feedback connections. In order to detect the features that trigger the crab’s re-
sponse we tried to cut some synapses from his neural system. This means that we
cut the feedback connections from some of his features like the home vector and his
translation, sending always zero values. We noticed that cutting the home vector con-
nections he stops responding, as he believes he is always home (‘inside-burrow’ stage).

However, cutting the translation feedback connections, the crab continues respond-
ing. This means that the translation feedback is not a determinant parameter in detect-
ing predations, although it much affects his behaviour (see Table 5.1). More specifi-
cally, his final distance from his burrow is longer and broader distributed, which means
that his home vector integrating ability becomes weaker. This is a sensible deduction
as the main parameter for this task should be the direction and length of his steps.
More interestingly, his tolerance with respect to home-run is higher, which means that
he lets the dummy come close enough before he decides to run back home.

Transforming our crab to a blind-crab makes him unresponsive. Here with the
term ‘blind’ we mean that we cut the synapses from his optical neurons, by showing
him totally black images. In this case the crab creates the belief that his burrow is
in zero distance, and he reacts like in the experiments with the cutting home-vector
connections. This results in two significant convictions: the crab stops responding in
the safety of his home, which might means that he relates his risk level with his home-
distance, and that he uses visual information to estimate his burrow distance. The latter
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belief is opposed to what the biologists believe, and the correlations it creates could
account for our models intermediate performance on this task.

5.4 Quantitative analysis

Previously, we analysed a small sample of our experiments and we criticise our
model’s performance according to our observations on the simulations’ output. Unfor-
tunately, we cannot run all the experiments one by one and provide qualitative results.
Therefore, we run massively simulations and we keep some statistical measurements
in order to evaluate our model quantitatively. More specifically, we simulate all the
provided experiments initialising the crab’s state using the first frame and then we let
our model make decisions. We let our experiments run for 50 time-steps, because this
is a bit longer than the average duration of the original trials. For every trial we keep
some statistics that help us to understand how was the overall performance of the crab
during the experiments.

These statistics are the crab’s distance from his burrow at the last time-step of the
experiment, the total length of his route, the max distance from his burrow, the number
of time-steps that the crabs was in a response stage (‘freeze’, ‘home-run’ or ‘burrow-

Cut feedback connections none translation
Latest distance from burrow 6.33±0.18 8.66±0.27
Trajectory length (TL) 20.78±0.46 16.21±0.47
Max distance from burrow (MD) 18.81±0.42 19.77±0.42
TL / MD 1.18±0.02 0.87±0.02
Number of time-steps:
- freeze 0.16±0.02 18.04±0.54
- home-run 16.42±0.45 0.40±0.03
- burrow-descent 3.37±0.18 2.96±0.16
- total responding 19.97±0.49 21.40±0.59
- stop-responding 34.77±0.57 16.46±0.62
Distance from predator:
- freeze 114.62±7.03 63.05±4.03
- home-run 116.09±2.42 95.51±2.75
- burrow-descent 82.87±3.23 68.30±3.19
- stop-responding 92.91±2.38 64.69±2.74
Distance from burrow:
- freeze 15.35±0.85 14.07±0.61
- home-run 13.65±0.39 12.94±0.38
- burrow-descent 6.95±0.19 7.96±0.23
- stop-responding 6.37±0.16 7.29±0.19

Table 5.1: Quantitative results of the best performance model. The present the mean
and standard error for a number of metrics for our model with or without cutting some
feedback connections. Note that standard error is given by SE = σ√

N
where N is the

sample size and σ is the sample standard deviation of the data.
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descent’), the total number of time-steps that he believes he is inside his burrow (when
his distance from his burrow is zero according to his beliefs), as well as his distance
from the predator and the burrow when he initiates these three stages and when he stops
responding. Moreover, we computed the ratio between the trajectory length of the crab
and his maximum distance from his burrow (TL / MD) in order to identify whether
the model creates a relationship between these two as we suspected in the qualitative
results of the previous section. From these measures we extracted some interesting
results that can help us understand how our model works and describe its performance.
Table 5.1 summarises the average values for these measures (x±SE).

From the table we can see that there are some clear relations that the model did in
order to activate the crab’s evasion behaviour. For example, the crab usually initiates
burrow-descent when he is close to 7cm from home while his freeze and home-run
stages are usually activated in a distance of approximately 15cm and 13cm respec-
tively. Moreover, his distance from the predator is usually close to 1.16m in order to
start his home-run and close to 0.82m for his descent. Notice that these values are
reasonable according to what we know about the evasion behaviour of the crabs.

On the other hand, by observing the TL / MD ratio, it is clear that there is a distinct
correlation between these two values. Figure 5.8 illustrates this correlation. This ration
is very close to 1 with very small standard error, which means that most of the TL
and ML values are very close the one another. This shows that the model learnt that
the length of the crab’s trajectory has to be very close to the initial distance from the
burrow. However, they might not be exactly the same, as the trajectory of the crabs path
could differ from a straight line. From the Table 5.1 and the histogram in Figure 5.8b
we can notice that the the mean trajectory length is usually greater than the distance
from the burrow, which makes possible that the model integrates both the orientation
and the length of the translation vector in order to decide how much of the home

(a) Scatter plot. (b) Distribution of the two values.

Figure 5.8: Comparison of the trajectory length and the maximum distance from the
burrow.
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distance it should consume in every time-step.
Figures 5.8a and 5.9a describe the bivariate distribution of the trajectory length and

maximum distance in regular conditions and when we cut the translational feedback of
the network. We can see that the two values are much more correlated on the normal
conditions (ρT L,MD

† = 0.73 and V ‡ = 0.63), while this correlation becomes much
smaller in the abnormal case (ρT L.MD = 0.47 and V = 0.27). This means that the
translational feedback is important for our model in order to integrate correctly the
crab’s path.

Figure 5.10a shows the relation between the crab’s distance from his burrow and
his distance from the dummy predator at the time-step when the home-run stage was
initiated. The correlation coefficient for these values is ρCB,CD = 0.43 with score V =
0.01, which means that there is a small correlation but it is not a strong one. The crab
usually responds when the dummy predator is in distance of 116.09±2.42cm (x±SE).
Figure 5.10b shows the distribution of the dummy predator’s distance when the home-
run is initiated. This shows how broad the distribution of the predator’s distance is
when the crab decides to do a home-run. Therefore, because of the breadth of this
distribution and the very low variance score above, we cannot make a clear statement
about the correlation of these two values. Similar results are also observed in Hemmi
(2005), where the experiments came from living crabs. This shows that our model
captured quite precisely the correlation between these two values through the data.

In Figure 5.11 we can see the crab’s distance for the burrow against the one from
the predator when the model decides to activate the freeze and burrow descent stages.

†ρX ,Y = cov(X ,Y )
σX σY

is the Pearson correlation coefficient. cov(X ,Y ) is the covariance of the two values
and σ is the standard deviation.

‡Variance score (V ) is defined as the sensitivity of the likelihood on the mean value, and it is equal
to the gradient of the maximum log-likelihood.

(a) Scatter plot. (b) Distribution of the two values.

Figure 5.9: Comparison of the trajectory length and the maximum distance from the
burrow. On these experiments we cut the translational feedback connections.
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(a) Predator vs burrow distance. (b) Predator distance.

Figure 5.10: Comparison of the predator and burrow distance from the crab when he
decides to do a home-run.

For the freeze stage there is some correlation (ρCD,CB = 2.37 and V = 0.08) between
the two values, although not strong at all, similarly to the home-run stage activation.
For the burrow descent stage this correlation turns to negative (−0.21 and 0.00) with
much more uncertainty. Therefore, practically this correlation does not exist at all.

Robot. As we prepared our software in order to face the hardware limitations, we
would like to run some experiments on the robot. However, time was against our

(a) Freeze. (b) Burrow descent.

Figure 5.11: Crab’s distance from their burrow against their distance from the dummy
while reacting in different stages.
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willing, and as the robot platform was used for another project as the core evaluation
system, we preferred to focus on our simulation experiments and not have experimental
result on the robot.





Chapter 6

Discussion

In this projects we created a machine learning model that imitates the evasion be-
haviour of fiddler crabs. This is not the first time that people try to imitate an animal’s
behaviour using machine learning models, but it is a novel work with respect to the
evasion behaviour. In practice, what our model imitates is the fear of the crab about
the predators, and their respective decision making system. This is actually a mutitask-
ing problem, as it does classification and regression at the same time, using the same
core network structure.

Our experiments and quantitative results show that our model imitates quite pre-
cisely the evasion behaviour of the biological crabs. We show that most of the corre-
lations that our model create regarding the possible features that activate the evasion
behaviour, one of whom probably is the trade-off between the crab-burrow distance
and the crab-predator distance, are close enough to the ones of the experiments with
biological crabs in Hemmi (2005).

However, there are many more parameters that affect this behaviour of the fiddler
crabs, which seem to be taken into account from our model through human inspection
(in the simulation), but we do not have any quantitative results in order to prove these
claims. Although our model seems to achieve our goal most of the times, there is room
for improvement, as it does not fit the data perfectly. A larger data-set with some extra
information about the original orientation of the crabs could help on improving the
model, and create even more realistic behaviours.

Overall, we strongly believe that machine learning models can imitate precisely
animals’ behaviours. We also believe that the key attributes of success on this task is
to use the correct data in the correct form. It has repeatedly been proven that we can
use data in order to solve complicated task. Here we have been used experimental data
to reconstruct a behaviour. We think that the key of success in our task is that ma-
chines can find hidden correlations in the data that are too complicated for humans to
understand. Therefore, our next target is to find out how we can discover human inter-
pretable knowledge in complicated mathematical models. Finally, we also believe that
if biologists and data scientists cooperate, they could do huge steps on understanding
the behaviours of animals and create bio-inspired machine learning models in order to
solve complicated tasks like the one of this project.
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6.1 Difficulties

There was a great number of difficulties we had to face in order to achieve our goals.
In this section we summarise the most important of them.

First of all was the hardware and the biological limitations we had. Our system
should work with specific restrictions, like the unique sensory input from the vision
of the crab and his omnidirectional ability of movement. Additionally, the fact that
it had to run in real-time, on a fanless computer was a huge restriction regarding our
model selection, as it did not allow us to have very deep and complicated structures.
Therefore we had to deal with sallower networks and less dimensions in order to have
predictions in less than 5 f ps∗.

As regards the biological limitations, a characteristic limitation is the peculiar eye
resolution of the crab’s eye, which putted limits on the structure of our model, and
did not allow us to use for example convolutional neural networks, as they require
complete images, while we had vectors of ommatidia values instead. This could be
solved by using the Voronoi diagram created to visualise the ommatidia values, but this
would not run in real-time, and is very different from the way that crabs neural system
processes the visual information. However, the biological limitation itself gave us the
solution, as we used the – similar to the crabs’ – M1 neurons to achieve localisation in
the images.

Another limitation was the requited computational resources we had available. As
we had to train a great number of quite complicated models and test them, we needed
a great memory and computational power in order to test as many different configura-
tions as possible. For this reason we implemented our model using libraries that can
benefit of the GPU technology. Therefore, one of the criteria for the selection of our
computer for the robot was to have a GPU, having in mind that we will use it in case
we end up with a quite deep or complicated architecture.

Regarding the training procedure, we tried to find a machine which includes the
CUDA technology and train most of our model configurations there. However, the
memory of this machine was limited, so we could not train our proposed model there,
creating some inconsistency with the rest of the models which were trained in different
machines with absent of the CUDA technology but greater memory capacity. The great
number of models comes from the fact that we wanted to compare different methods
and parameters making sure that we selected the optimal ones.

The above difficulty have different aspects, one of those is the computational re-
sources discussed before. Another one is the time needed to train every model, which
was limited and we could not do as many experiments as we wanted. Solving the time
problem would allow us to have our full model trained, and see whether in practice we
can outperform the current model with the best performance, i.e the M2 model.

As one of our ultimate goals is to use this model in the future in order to do analysis
about the behaviour, we had to do our model as simple as possible, so that we can
interpret its processes. This generates limitations, excluding from our possible models
selection most of the modern deep learning techniques.

∗ f ps = frames per second
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6.2 Future work

On this project we tried to build a model that adapts the evasion behaviour of the
crab using his own brain structure. However, due to unexpected incidences we could
not have results from our full proposed model, which we strongly believe that it would
perform even better because of our promising results with this structure during our
first experiments. Therefore, trying to eliminate this issue and create some statistical
results and comparisons similar with the ones we did with the M2 model could be a
very interesting future work.

Furthermore, we noticed that the compass encoding that we use in our model can
include distance information as well. This could replace our (8+1)-dimensional rep-
resentation of the home and the translation-step vector with the updated 8-dimensional
compass encoding. We cannot say that this would work better, but it would be inter-
esting to see if the network can perform at least the same combining the distance and
orientation in a single encoding method.

An alternative solution could be to replace the whole translation vector with signals
for (and from) the motors. This would make difficult to create a data-set and would
create less human-interpretable models. Despite this, it would induce a greater level
of abstraction which could work better with the neural network, as this representation
could probably be encoded easier by its hidden layers. History says that abstraction
could lead in better performance (Beer and Gallagher, 1992), and we could consider
this solution if we are not interesting in interpreting our model.

Imitating other behaviours of fiddler crabs like interactions with the con-specifics
or the escape behaviour (for herding crabs) would be interesting future approaches as
well. In this project we consider only burrow-holder crabs, as even biologists have no
experimental results from herding crabs. More specifically, during a personal discus-
sion with professor Jan Hemmi, he stated that its hard to create an experimental set-up
for herding crabs in the open field, as we cannot predict their escape direction.

On the other hand, we shared the camera module we created for fiddler crabs’ eyes
with professor Jan Hemmi, so that he can capture videos on the original crabs’ habitat.
Thus, it would be interesting to use these data in order to improve the quality of our
data-set creating more realistic environment for the crab incorporating the original
complexity of their habitat, which seems to affect their behaviour. In this case it could
be possible to create more complicated models involving different behaviours in the
same model.

Another interesting extension could be to complete, and test our work on putting
the model onto the robot. This could enable us to compare the performance of the
data-driven approach of the evasion behaviour with its sibling algorithmic approach
which is part of another project. This would probably be a more fancy and, as a result,
attractive application of our work.

Last but not least, we strongly believe that a greater analysis of our trained model
could bring to light some very interesting observations, which could help both the biol-
ogists and the machine learning scientists to identify key features on animal behaviour
from both perspectives.
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Appendix A

Handling the double-fisheye images

As we get the raw fisheye images from the camera, we thought that it is a good
idea to process them and build the panoramic 360◦ view. Due to the fact that the raw
images are discontinuous, it is not easy to understand what you see, especially when the
objects pass from the one camera to the other. For this reason, we implemented some
methods and try to create 360◦ images from the double fisheye ones. These images
have resolution 1,280× 640pix, so each of the fisheye images is a square image of
resolution 640×640pix.

First, we tried to unwarp every image independently treating the perimeter of every
square image as the equator of a sphere, and the centre of the images as the respective
pole. Unwarpping the images in this way we end up with image like the one of the
Figure A.1. In Figure A.1a, we use the moving radius technique and treat every pixel
as an elevation angle, while in Figure A.1b, we use the concentric technique, treating
the pixels as azimuth angles. Notice that the moving radius approach is still discontin-
uous while the concentric one looks more panoramic, but the equator still needs to be
handled more carefully. However, the latter technique gave us a hint of how to move
on on our exploration of how to combine the images.

It is obvious that this approach is what are we looking for, but it needs some mod-
ifications. First of all, in order to shot an image like this we have to hold the camera
horizontally. This was odd, as we cannot have the camera placed like this, because
it has nothing to do with the original configuration of the crabs’ eyes. Therefore we
rotated the images to have the correct alignment, while at the same time we tried to

(a) Unwarp using elevation angle. (b) Unwarp using azimuthal angle.

Figure A.1: Unwarped images treating each fisheye image as individual.
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(a) The detected SHIFT features. The green lines
denote the matched features.

(b) The blended image after the applying the Ren-
sac algorithm.

Figure A.2: Blending approach using SHIFT features and Ransac.

merge the two images. As you can easily notice, there is a quite big area of overlapping
in ±10◦ of the horizon.

We tried to use SHIFT features, Ransac algorithm and the homography to blend
the images, but the results where odd for one more time (Figure A.2). This actually
happens because the algorithm works as expected. Simple Ransac has not been in-
vented to blend distorted 360◦ images, as it may find matching features in both sides
of the image. Therefore, this blending technique was not good enough.

Another approach we used was the pyramid blending, where we blurred each image
separately using Gaussian filter and then sharpen them using Lagrangian filter. We call
it pyramid blending, because after each sequence of filtering we scale down the images,
repeating this procedure for three times. Then we put the images side by side and scale
up passing the filter with the inverse order. Finally we end up with images similar to
the one in Figure A.3. This result is much better than before, but it is very blurred and
the edges look like having LED hidden lighting.

Finally, we found that the best solution was much simpler than all the techniques we
tried do far. As the images overlapped for about 20pix we tried to blend the two images

(a) The raw fisheye images. (b) The blended image.

Figure A.3: Pyramid blending approach.
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(a) The raw fisheye images. (b) The blended image.

Figure A.4: Alpha blending of the unwarped images.

using alpha blending. This resulted in a more natural combination of the images, as
the two lenses of the camera where almost perfectly aligned (see Figure A.4). The
small error in the very close distances is almost the same with the one of the stitched
images we get from the wireless communication.

After all this processing with the 360◦ images we are more experienced to create a
model that can sample efficiently from the image, obtaining the corresponding inten-
sities for our crab’s ommatidia. Nevertheless, the above processing is not necessary to
obtain the resolution of our crab, and as a result it is not part of our resolution extraction
procedure.





Appendix B

The custom sampling resolution
model of fiddler crabs

To imitate the sampling resolution, we first have to define the term interommaditia
angle or ∆φ. As we manipulate the crab’s eye as a sphere, we count distances on it’s
cortex with angles. The angle between two ommatidia is the interommatidia ange, and
we usually split it into the vertical (∆φv) and horizontal (∆φh) one.

To build our model, we first create a vertical slice of the eye. Following Land
and Layne (1995a), we compute the vertical interommatidia angle of the frontal region
using the equation:

∆φv = 0.001334(n−48)2 +0.52 (B.1)

where n is the row number. In the caudal region the eye has about 30% less rows
than in the frontal. Therefore, we reduced the number of rows from 100 to 70 for the
caudal region, and increase the vertical interommatidia angle, so that the top ommatid-

(a) Vertical slice with lines that connect the omma-
tidia that belong to the same row.

(b) horizontal slice and projection of the fitted
Gaussian facets.

Figure B.1: Vertical and horizontal slices of the customised sampling resolution model.
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(a) Side view representing the half-left eye of the
crab.

(b) Top-right view of the complete twin-eye.

Figure B.2: The custom sampling model, built following Land and Layne (1995a) and
Smolka and Hemmi (2009).

ium is as close as possible to the 90◦ elevation. This process will give us the vertical
slice of Figure B.1a. For the horizontal slice of the Figure B.1b, we follow Smolka and
Hemmi (2009) who claim that the horizontal interommatidia angle is quite higher on
the lateral zone rather than the others. Hence, we calculate the horizontal interomma-
tidia angle for the lateral zone and then we use interpolation to find the intermediate
values of ∆φh.

Having a formula for the vertical and the horizontal slices, we project the horizontal
slices on planes perpendicular to the vertical slice (shown as lines in Figure B.1a)
to generate the complete model of a half-eye. Our final sampling model consists of
10,336 ommatidia and looks quite similar to the one of Figure 2.4. Figure B.2 shows

Figure B.3: The crab’s view image, created using Voronoi diagrams and the custom
sampling resolution model.
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the half- and twin-eyes. Notice that in the edge where the left and right eyes get
merged, there is some inconsistency. However, this would be the case even if we used
the original model and merge the lateral regions of the the two eyes. Nevertheless, this
does not affect much our sampling resolution, as we handle each eye independently,
but we plotted both half-eyes at once to make clear how our final model looks like.

Finally, to sample the mean value of each ommatidium we project the ommatidium-
centres of the two half-eyes on the their corresponding fisheye image. Figure B.4
illustrates this projection while Figure B.3 shows a processed image after applying this
sampling model.

Figure B.4: Projection of the half-left-eye of our custom model on the fisheye image.
The coloured pixels are the centres of the ommatidia, while the rest are painted black.
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Whitening results

In this appendix we comment on some interesting results we found during our ex-
periments with whitened images. We tried to whiten the visual input of our crab using
two different methods: the widely used principal component analysis or PCA whiten-
ing and the less common zero-phase component analysis or ZCA whitening methods.

C.1 Principal Component Analysis

Comparing the original and whitened images using PCA, we noticed that they are
hardly interpretable by humans. However, this does not mean that the result is wrong,
as this is the reason why we use neural network structures: to find correlations that
humans cannot think about. Figure C.1 shows some examples of the original and
whitened images. We notice that there is a clear separation on the dorsal and ventral
zones, while in the ventral zone there is another separation between the left and right
lateral zones.

In the right images, dark colours are a values below zero and the light ones are
above. The intensity of the colour shows the size of the number. It now starts to
become clear how the PCA grouped the features. Moreover, we notice that most of
the area in the top and right regions is grey, while in the bottom left region the values
are more abstract. However, we know that on this region there is no information, as in
none of the data something appears in this region.

Starting from a more abstract concept, where we try to distinguish the 4 scenes,
we can see that every scene has been codded by a different pattern in the whitened
image. In the first frame, we have a mostly grey sky and a mostly grey ground, while
the predator and the burrow are far away from the crab and he hardly see them. In
the second frame, the sky is more or less the same while the ground is not that clear
anymore. Here we have the burrow closer, and the predator in a range where the crab
responds. In the third frame, we have a bit of chaos in both the sky and the ground,
while the crab is in burrow-descent position, and the predator is much closer. In the
last frame, the burrow is not observable anymore and the predator is in an even closer
position. Now the sky is chaotic and the ground is clear again.

From this experiment, we conclude that probably the features on the sky are sensi-
ble on the elevation of the predator, as they become chaotic when the predator exceed a
bordering elevation. On the other hand, the features on the ventral region are sensitive
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(a)

(b)

(c)

(d)

Figure C.1: Snapshots of an experiment during the evasion behaviour of the crab. The
left images are the original view of the crab, and the right ones are after performing
PCA whitening. Dark values denote negative sign, while the light ones positive.

in the size of the burrow, which is correlated with its distance. Therefore, we seem
to have elevation detector on the sky and size detector on the ground using the PCA
whitening. Nevertheless, this needs further study on a broader range of images in order
to have a more informative analysis.
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(a)

(b)

(c)

(d)

Figure C.2: Snapshots of the same experiment as in Figure C.1. The left images are
the original view of the crab, and the right ones are after performing ZCA whitening.

C.2 Zero-phased Component Analysis

Opposed to the PCA whitening images that we saw previously, those produced from
the ZCA whitening are more interpretable (see Figure C.2). More specifically, we can
see that none of the objects of the scene have changed position or size due to this
transformation. However, their values are far different. Notice that there is a path
drawn on the ground, which sets the borders where the burrow is expected to be seen,
while the sky has some light blobs and curves, which could denote some correlation
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between the current scene and other known∗ scenes.
In addition, notice the white ring around the black predator and burrow, which

causes increased contrast inducing the lateral inhibition. Therefore, on these repre-
sentation, not only we keep the position of the objects, but we also make them more
observable.

Another noticeable effect of this transformation is that while the sky is full of scars,
the ground is clear and smooth, except of the track where the burrow is moving. More-
over, the neighbourhood of the points where the predator and the burrow are spotted
looks like it gives hints about the next or previous frame mainly by using their white
ring. This is like embedding motion in the image.

∗Here with the term ‘known’ we mean that they were used in order to create the correlation matrix
(see Section 4.2.3)
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Masci, J., Meier, U., Cireşan, D., and Schmidhuber, J. (2011). Stacked convolutional
auto-encoders for hierarchical feature extraction. In Artificial Neural Networks and
Machine Learning–ICANN 2011, pages 52–59. Springer.

Medan, V., De Astrada, M. B., Scarano, F., and Tomsic, D. (2015). A network of
visual motion-sensitive neurons for computing object position in an arthropod. The
Journal of Neuroscience, 35(17):6654–6666.

Medan, V., Oliva, D., and Tomsic, D. (2007). Characterization of lobula giant neurons
responsive to visual stimuli that elicit escape behaviors in the crab chasmagnathus.
Journal of neurophysiology, 98(4):2414–2428.

Oliva, D., Medan, V., and Tomsic, D. (2007). Escape behavior and neuronal responses
to looming stimuli in the crab chasmagnathus granulatus (decapoda: Grapsidae).
Journal of Experimental Biology, 210(5):865–880.

Palmer, A. R. (2012). Developmental origins of normal and anomalous random right-
left asymmetry: lateral inhibition versus developmental error in a threshold trait.
Contributions to Zoology, 81(2):111–124.

Pascanu, R., Mikolov, T., and Bengio, Y. (2013). On the difficulty of training recurrent
neural networks. ICML (3), 28:1310–1318.

Rasmus, A., Berglund, M., Honkala, M., Valpola, H., and Raiko, T. (2015). Semi-
supervised learning with ladder networks. In Advances in Neural Information Pro-
cessing Systems, pages 3546–3554.

Salakhutdinov, R., Mnih, A., and Hinton, G. (2007). Restricted boltzmann machines
for collaborative filtering. In Proceedings of the 24th international conference on
Machine learning, pages 791–798. ACM.

Sandeman, D. (1975). Dynamic receptors in the statocysts of crabs. Fortschritte der
Zoologie, 23(1):185.



76 Bibliography

Schultz, W., Dayan, P., and Montague, P. R. (1997). A neural substrate of prediction
and reward. Science, 275(5306):1593–1599.

Schwind, R. (1989). Size and distance perception in compound eyes. In Facets of
Vision, pages 425–444. Springer.

Smolka, J. et al. (2011a). Sampling visual space: topography, colour vision and visu-
ally guided predator avoidance in fiddler crabs (uca vomeris).

Smolka, J. and Hemmi, J. M. (2009). Topography of vision and behaviour. Journal of
Experimental Biology, 212(21):3522–3532.

Smolka, J., Zeil, J., and Hemmi, J. M. (2011b). Natural visual cues eliciting predator
avoidance in fiddler crabs. Proceedings of the Royal Society of London B: Biological
Sciences, 278(1724):3584–3592.

Srivastava, N., Hinton, G. E., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R.
(2014). Dropout: a simple way to prevent neural networks from overfitting. Journal
of Machine Learning Research, 15(1):1929–1958.

Srivastava, N., Mansimov, E., and Salakhutdinov, R. (2015). Unsupervised learning of
video representations using lstms. CoRR, abs/1502.04681, 2.

Tetzlaff, T., Helias, M., Einevoll, G. T., and Diesmann, M. (2012). Decorrelation of
neural-network activity by inhibitory feedback. PLoS Comput Biol, 8(8):e1002596.

Tieleman, T. and Hinton, G. (2012). Lecture 6.5-rmsprop: Divide the gradient by a
running average of its recent magnitude. COURSERA: Neural Networks for Ma-
chine Learning, 4(2).

Tomsic, D., de Astrada, M. B., Sztarker, J., and Maldonado, H. (2009). Behavioral and
neuronal attributes of short-and long-term habituation in the crab chasmagnathus.
Neurobiology of learning and memory, 92(2):176–182.

Walls, M. L. and Layne, J. E. (2009). Direct evidence for distance measurement via
flexible stride integration in the fiddler crab. Current Biology, 19(1):25–29.

Xu, K., Ba, J., Kiros, R., Courville, A., Salakhutdinov, R., Zemel, R., and Bengio, Y.
(2015). Show, attend and tell: Neural image caption generation with visual attention.
arXiv preprint arXiv:1502.03044.

Yantis, S. (2013). Sensation and perception. Palgrave Macmillan.

Zeil, J. (1998). Homing in fiddler crabs (uca lactea annulipes and uca vomeris: Ocy-
podidae). Journal of comparative physiology A, 183(3):367–377.

Zeil, J. and Al-Mutairi, M. (1996). The variation of resolution and of ommatidial di-
mensions in the compound eyes of the fiddler crab uca lactea annulipes (ocypodidae,
brachyura, decapoda). Journal of Experimental Biology, 199(7):1569–1577.



Bibliography 77

Zeil, J. and Layne, J. (2002). Path integration in fiddler crabs and its relation to habitat
and social life. In Crustacean experimental systems in neurobiology, pages 227–
246. Springer.

Zeil, J., Nalbach, G., and Nalbach, H.-O. (1986). Eyes, eye stalks and the visual world
of semi-terrestrial crabs. Journal of Comparative Physiology A: Neuroethology,
Sensory, Neural, and Behavioral Physiology, 159(6):801–811.

Zhang, M., McCarthy, Z., Finn, C., Levine, S., and Abbeel, P. (2015). Learn-
ing deep neural network policies with continuous memory states. arXiv preprint
arXiv:1507.01273.


